Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Overview

👩‍✈️ Coqpit

Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Work in progress... 🌡️

Why I need this

What I need from a ML configuration library...

  1. Fixing a general config schema in Python to guide users about expected values.

    Python is good but not universal. Sometimes you train a ML model and use it on a different platform. So, you need your model configuration file importable by other programming languages.

  2. Simple dynamic value and type checking with default values.

    If you are a beginner in a ML project, it is hard to guess the right values for your ML experiment. Therefore it is important to have some default values and know what range and type of input are expected for each field.

  3. Ability to decompose large configs.

    As you define more fields for the training dataset, data preprocessing, model parameters, etc., your config file tends to get quite large but in most cases, they can be decomposed, enabling flexibility and readability.

  4. Inheritance and nested configurations.

    Simply helps to keep configurations consistent and easier to maintain.

  5. Ability to override values from the command line when necessary.

    For instance, you might need to define a path for your dataset, and this changes for almost every run. Then the user should be able to override this value easily over the command line.

    It also allows easy hyper-parameter search without changing your original code. Basically, you can run different models with different parameters just using command line arguments.

  6. Defining dynamic or conditional config values.

    Sometimes you need to define certain values depending on the other values. Using python helps to define the underlying logic for such config values.

  7. No dependencies

    You don't want to install a ton of libraries for just configuration management. If you install one, then it is better to be just native python.

🔍 Examples

👉 Serialization

import os
from dataclasses import asdict, dataclass, field
from coqpit import Coqpit, check_argument
from typing import List, Union


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_c: str = "Coqpit is great!"

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_c', c, restricted=True)


@dataclass
class NestedConfig(Coqpit):
    val_d: int = 10
    val_e: int = None
    val_f: str = "Coqpit is great!"
    sc_list: List[SimpleConfig] = None
    sc: SimpleConfig = SimpleConfig()
    union_var: Union[List[SimpleConfig], SimpleConfig] = field(default_factory=lambda: [SimpleConfig(),SimpleConfig()])

    def check_values(self,):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_d', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_e', c, restricted=True, min_val=128, max_val=4058, allow_none=True)
        check_argument('val_f', c, restricted=True)
        check_argument('sc_list', c, restricted=True, allow_none=True)
        check_argument('sc', c, restricted=True, allow_none=True)


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    # init 🐸 dataclass
    config = NestedConfig()

    # save to a json file
    config.save_json(os.path.join(file_path, 'example_config.json'))
    # load a json file
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the json file.
    config2.load_json(os.path.join(file_path, 'example_config.json'))
    # now they should be having the same values.
    assert config == config2

    # pretty print the dataclass
    print(config.pprint())

    # export values to a dict
    config_dict = config.to_dict()
    # crate a new config with different values than the defaults
    config2 = NestedConfig(val_d=None, val_e=500, val_f=None, sc_list=None, sc=None, union_var=None)
    # update the config with the exported valuess from the previous config.
    config2.from_dict(config_dict)
    # now they should be having the same values.
    assert config == config2

👉 argparse handling and parsing.

import argparse
import os
from dataclasses import asdict, dataclass, field
from typing import List

from coqpit.coqpit import Coqpit, check_argument
import sys


@dataclass
class SimplerConfig(Coqpit):
    val_a: int = field(default=None, metadata={'help': 'this is val_a'})


@dataclass
class SimpleConfig(Coqpit):
    val_a: int = field(default=10,
                       metadata={'help': 'this is val_a of SimpleConfig'})
    val_b: int = field(default=None, metadata={'help': 'this is val_b'})
    val_c: str = "Coqpit is great!"
    mylist_with_default: List[SimplerConfig] = field(
        default_factory=lambda:
        [SimplerConfig(val_a=100),
         SimplerConfig(val_a=999)],
        metadata={'help': 'list of SimplerConfig'})

    # mylist_without_default: List[SimplerConfig] = field(default=None, metadata={'help': 'list of SimplerConfig'})  # NOT SUPPORTED YET!

    def check_values(self, ):
        '''Check config fields'''
        c = asdict(self)
        check_argument('val_a', c, restricted=True, min_val=10, max_val=2056)
        check_argument('val_b',
                       c,
                       restricted=True,
                       min_val=128,
                       max_val=4058,
                       allow_none=True)
        check_argument('val_c', c, restricted=True)


def main():
    file_path = os.path.dirname(os.path.abspath(__file__))

    # initial config
    config = SimpleConfig()
    print(config.pprint())

    # reference config that we like to match with the config above
    config_ref = SimpleConfig(val_a=222,
                              val_b=999,
                              val_c='this is different',
                              mylist_with_default=[
                                  SimplerConfig(val_a=222),
                                  SimplerConfig(val_a=111)
                              ])

    # create and init argparser with Coqpit
    parser = argparse.ArgumentParser()
    parser = config.init_argparse(parser)
    parser.print_help()
    args = parser.parse_args()

    # parse the argsparser
    config.from_argparse(args)
    config.pprint()
    # check the current config with the reference config
    assert config == config_ref


if __name__ == '__main__':
    sys.argv.extend(['--coqpit.val_a', '222'])
    sys.argv.extend(['--coqpit.val_b', '999'])
    sys.argv.extend(['--coqpit.val_c', 'this is different'])
    sys.argv.extend(['--coqpit.mylist_with_default.0.val_a', '222'])
    sys.argv.extend(['--coqpit.mylist_with_default.1.val_a', '111'])
    main()

🤸‍♀️ Merging coqpits

import os
from dataclasses import dataclass
from coqpit.coqpit import Coqpit, check_argument


@dataclass
class CoqpitA(Coqpit):
    val_a: int = 10
    val_b: int = None
    val_d: float = 10.21
    val_c: str = "Coqpit is great!"


@dataclass
class CoqpitB(Coqpit):
    val_d: int = 25
    val_e: int = 257
    val_f: float = -10.21
    val_g: str = "Coqpit is really great!"


if __name__ == '__main__':
    file_path = os.path.dirname(os.path.abspath(__file__))
    coqpita = CoqpitA()
    coqpitb = CoqpitB()
    coqpitb.merge(coqpita)
    print(coqpitb.val_a)
    print(coqpitb.pprint())
Comments
  • Allow file-like objects when saving and loading

    Allow file-like objects when saving and loading

    Allow users to save the configs to arbitrary locations through file-like objects. Would e.g. simplify coqui-ai/TTS#683 without adding an fsspec dependency to this library.

    opened by agrinh 6
  • Latest PR causes an issue when a `Serializable` has default None

    Latest PR causes an issue when a `Serializable` has default None

    https://github.com/coqui-ai/coqpit/blob/5379c810900d61ae19d79b73b03890fa103487dd/coqpit/coqpit.py#L539

    @reuben I am on it but if you have an easy fix go for it. Right now it breaks all the TTS trainings.

    opened by erogol 2
  • [feature request] change the `arg_perfix` of coqpit

    [feature request] change the `arg_perfix` of coqpit

    Is it possible to change the arg_perfix when using Coqpit object to another value / empty string? I see the option is supported in the code by changing arg_perfix, but not sure how to access it using the proposed API.

    Thanks for the package, looks very useful!

    opened by mosheman5 1
  • Setup CI to push new tags to PyPI automatically

    Setup CI to push new tags to PyPI automatically

    I'm gonna add a workflow to automatically upload new tags to PyPI. @erogol when you have a chance could you transfer the coqpit project on PyPI to the coqui user?[0] Then you can add your personal account as a maintainer also, so you don't have to change your local setup.

    In the mean time I'll iterate on testpypi.

    [0] https://pypi.org/user/coqui/

    opened by reuben 1
  • Fix rsetattr

    Fix rsetattr

    rsetattr() is updated to pass the new test cases below.

    I don't know if it is the right solution. It might be that rsetattr confuses when coqpit is used as a prefix.

    opened by erogol 0
  • [feature request] Warning when unexpected key is loaded but not present in class

    [feature request] Warning when unexpected key is loaded but not present in class

    Here is an toy scenario where it would be nice to have a warning

    from dataclasses import dataclass
    from coqpit import Coqpit
    
    @dataclass
    class SimpleConfig(Coqpit):
        val_a: int = 10
        val_b: int = None
    
    if __name__ == "__main__":
        config = SimpleConfig()
    
        tmp_config = config.to_dict()
        tmp_config["unknown_key"] = "Ignored value"
        config.from_dict(tmp_config)
        print(config.to_json())
    

    There the value of config.to_json() is

    {
        "val_a": 10,
        "val_b": null
    }
    

    Which is expected behaviour, but we should get a warning that some keys were ignored (IMO)

    feature request 
    opened by WeberJulian 6
  • [feature request] Add `is_defined`

    [feature request] Add `is_defined`

    Use coqpit.is_defined('field') to check if "field" in coqpit and coqpit.field is not None:

    It is a common condition when you parse out a coqpit object.

    feature request 
    opened by erogol 0
  • Allow grouping of argparse fields according to subclassing

    Allow grouping of argparse fields according to subclassing

    When using inheritance to extend config definitions the resulting ArgumentParser has all fields flattened out. It would be nice to group fields by class and allow some control over ordering.

    opened by reuben 2
Releases(v0.0.17)
Owner
Eren Gölge
AI researcher @Coqui.ai
Eren Gölge
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed Fayçal 3 Nov 20, 2021
healthy and lesion models for learning based on the joint estimation of stochasticity and volatility

health-lesion-stovol healthy and lesion models for learning based on the joint estimation of stochasticity and volatility Reference please cite this p

5 Nov 01, 2022
Accelerating model creation and evaluation.

EmeraldML A machine learning library for streamlining the process of (1) cleaning and splitting data, (2) training, optimizing, and testing various mo

Yusuf 0 Dec 06, 2021
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL)

CyLP CyLP is a Python interface to COIN-OR’s Linear and mixed-integer program solvers (CLP, CBC, and CGL). CyLP’s unique feature is that you can use i

COIN-OR Foundation 161 Dec 14, 2022
Responsible Machine Learning with Python

Examples of techniques for training interpretable ML models, explaining ML models, and debugging ML models for accuracy, discrimination, and security.

ph_ 624 Jan 06, 2023
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
AtsPy: Automated Time Series Models in Python (by @firmai)

Automated Time Series Models in Python (AtsPy) SSRN Report Easily develop state of the art time series models to forecast univariate data series. Simp

Derek Snow 465 Jan 02, 2023
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Extreme Learning Machine implementation in Python

Python-ELM v0.3 --- ARCHIVED March 2021 --- This is an implementation of the Extreme Learning Machine [1][2] in Python, based on scikit-learn. From

David C. Lambert 511 Dec 20, 2022
Both social media sentiment and stock market data are crucial for stock price prediction

Relating-Social-Media-to-Stock-Movement-Public - We explore the application of Machine Learning for predicting the return of the stock by using the information of stock returns. A trading strategy ba

Vishal Singh Parmar 15 Oct 29, 2022
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
Python ML pipeline that showcases mltrace functionality.

mltrace tutorial Date: October 2021 This tutorial builds a training and testing pipeline for a toy ML prediction problem: to predict whether a passeng

Log Labs 28 Nov 09, 2022
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
Sequence learning toolkit for Python

seqlearn seqlearn is a sequence classification toolkit for Python. It is designed to extend scikit-learn and offer as similar as possible an API. Comp

Lars 653 Dec 27, 2022
A collection of interactive machine-learning experiments: 🏋️models training + 🎨models demo

🤖 Interactive Machine Learning experiments: 🏋️models training + 🎨models demo

Oleksii Trekhleb 1.4k Jan 06, 2023
Simplify stop motion animation with machine learning.

Simplify stop motion animation with machine learning.

Nick Bild 25 Sep 15, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Predico Disease Prediction system based on symptoms provided by patient- using Python-Django & Machine Learning

Felix Daudi 1 Jan 06, 2022