CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

Overview

CLIP-GEN

[简体中文][English]

本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。

clip-gen

CLIP-GEN 是一个 Language-Free 的文本生成图像的方法,它不依赖图文训练样本,通过预训练 CLIP 模型的强大表征能力,只需要图片数据就可以训练出一个文本生成图像的模型。该方法的基本原理是:CLIP-GEN 首先会训练一个 VQ-GAN,把图片映射到离散空间;然后再训练一个 GPT 模型,把 CLIP embedding 映射到 VQ-GAN 的离散空间;由于在 CLIP 中,文本和图像共享一个特征空间,在 inference 的时候我们就可以通过同样的方法把文本映射到 VQ-GAN 的离散空间,然后 decode 为 RGB 图像。

Requirements

  • hfai (to be released soon)
  • torch>=1.8

Training

支持的数据集:coco, imagenet, googlecc

  1. 下载 CLIP 预训练模型

    下载 CLIP 后放至 pretrained/clip_vit_b32.pt,该预训练模型来自 OpenAI.

  2. 在 COCO 上训练 VQGAN

    提交任务至萤火集群:

    hfai python train_vqgan.py --ds coco -- -n 1 -p 30

    本地运行:

    python train_vqgan.py --ds coco
  3. 在 COCO 上训练 Conditional GPT

    提交任务至萤火集群:

    hfai python train_gpt.py --ds coco --vqgan_ckpt /path/to/vqgan/ckpt -- -n 4 -p 30

    本地运行:

    python train_gpt.py --ds coco --vqgan_ckpt /path/to/vqgan/ckpt

Demo

下载在 COCO 上训练好的 VQGANGPT 模型,分别放到 pretrained/vqgan_coco.ptpretrained/gpt_coco.pt;然后运行:

python demo.py --text "A city bus driving on the city street" --out "bus.jpg"

NOTE: demo 的运行不依赖 hfai,用户可以在装有 PyTorch 的环境下直接使用

Samples

下面是一些文本生成图像的样本:

tower bus living train skiing

References

Citation

@article{wang2022clip,
  title={CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP},
  author={Wang, Zihao and Liu, Wei and He, Qian and Wu, Xinglong and Yi, Zili},
  journal={arXiv preprint arXiv:2203.00386},
  year={2022}
}

TODO

  • 预训练模型
  • FFRecord 数据
You might also like...
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models
Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models

Text2Art is an AI art generator powered with VQGAN + CLIP and CLIPDrawer models. You can easily generate all kind of art from drawing, painting, sketch, or even a specific artist style just using a text input. You can also specify the dimensions of the image. The process can take 3-20 mins and the results will be emailed to you.

A 1.3B text-to-image generation model trained on 14 million image-text pairs
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

A PyTorch Lightning solution to training OpenAI's CLIP from scratch.
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Comments
  • "nn.TransformerEncoderLayer" is adopted to construct the "conditonal transformer" in your paper.

    Thanks for your great work.

    I noticed that you utilize "nn.TransformerEncoderLayer" when constructing "conditional transformer". Since it is used to predict the next token index, I am wondering whether the decoder of transformer is more appropriate for the construction of your conditional transformer? or what's the reason that you don't adopt "nn.TransformerdecoderLayer" ?

    Because of the structure of "nn.TransformerEncoderLayer" is simpler or more concise than that of "nn.TransformerDEcoderLayer" ?

    opened by fido20160817 0
  • Add Web Demo & Docker environment

    Add Web Demo & Docker environment

    This pull request makes it possible to run your model inside a Docker environment, which makes it easier for other people to run it. We're using an open source tool called Cog to make this process easier.

    This also means we can make a web page where other people can try out your model, view it here: https://replicate.com/hfailab/clip-gen. You can find the docker file under the tab ‘run model with docker’.

    We have added some examples to the page, but do claim the page so you can own the page, customise the Example gallery as you like, push any future update to the web demo, and we'll feature it on our website and tweet about it too. You can find the 'Claim this model' button on the top of the page. Any member of the HFAiLab organization on GitHub can claim the model ~ When the page is claimed, it will be automatically linked to the arXiv website as well (under “Demos”).

    In case you're wondering who I am, I'm from Replicate, where we're trying to make machine learning reproducible. We got frustrated that we couldn't run all the really interesting ML work being done. So, we're going round implementing models we like. 😊

    opened by chenxwh 0
Neural Scene Graphs for Dynamic Scene (CVPR 2021)

Implementation of Neural Scene Graphs, that optimizes multiple radiance fields to represent different objects and a static scene background. Learned representations can be rendered with novel object

151 Dec 26, 2022
Awesome Deep Graph Clustering is a collection of SOTA, novel deep graph clustering methods

ADGC: Awesome Deep Graph Clustering ADGC is a collection of state-of-the-art (SOTA), novel deep graph clustering methods (papers, codes and datasets).

yueliu1999 297 Dec 27, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
This repository compare a selfie with images from identity documents and response if the selfie match.

aws-rekognition-facecompare This repository compare a selfie with images from identity documents and response if the selfie match. This code was made

1 Jan 27, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
CvT2DistilGPT2 is an encoder-to-decoder model that was developed for chest X-ray report generation.

CvT2DistilGPT2 Improving Chest X-Ray Report Generation by Leveraging Warm-Starting This repository houses the implementation of CvT2DistilGPT2 from [1

The Australian e-Health Research Centre 21 Dec 28, 2022
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
Lightweight plotting to the terminal. 4x resolution via Unicode.

Uniplot Lightweight plotting to the terminal. 4x resolution via Unicode. When working with production data science code it can be handy to have plotti

Olav Stetter 203 Dec 29, 2022
Cross-modal Deep Face Normals with Deactivable Skip Connections

Cross-modal Deep Face Normals with Deactivable Skip Connections Victoria Fernández Abrevaya*, Adnane Boukhayma*, Philip H. S. Torr, Edmond Boyer (*Equ

72 Nov 27, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Udacity's CS101: Intro to Computer Science - Building a Search Engine

Udacity's CS101: Intro to Computer Science - Building a Search Engine All soluti

Phillip 0 Feb 26, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022