[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

Overview

DataFree

A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

Authors: Gongfan Fang, Jie Song, Xinchao Wang, Chengchao Shen, Xingen Wang, Mingli Song

CMI (this work) DeepInv
ZSKT DFQ

Results

1. CIFAR-10

Method resnet-34
resnet-18
vgg-11
resnet-18
wrn-40-2
wrn-16-1
wrn-40-2
wrn-40-1
wrn-40-2
wrn-16-2
T. Scratch 95.70 92.25 94.87 94.87 94.87
S. Scratch 95.20 95.20 91.12 93.94 93.95
DAFL 92.22 81.10 65.71 81.33 81.55
ZSKT 93.32 89.46 83.74 86.07 89.66
DeepInv 93.26 90.36 83.04 86.85 89.72
DFQ 94.61 90.84 86.14 91.69 92.01
CMI 94.84 91.13 90.01 92.78 92.52

2. CIFAR-100

Method resnet-34
resnet-18
vgg-11
resnet-18
wrn-40-2
wrn-16-1
wrn-40-2
wrn-40-1
wrn-40-2
wrn-16-2
T. Scratch 78.05 71.32 75.83 75.83 75.83
S. Scratch 77.10 77.01 65.31 72.19 73.56
DAFL 74.47 57.29 22.50 34.66 40.00
ZSKT 67.74 34.72 30.15 29.73 28.44
DeepInv 61.32 54.13 53.77 61.33 61.34
DFQ 77.01 68.32 54.77 62.92 59.01
CMI 77.04 70.56 57.91 68.88 68.75

Quick Start

1. Visualize the inverted samples

Results will be saved as checkpoints/datafree-cmi/synthetic-cmi_for_vis.png

bash scripts/cmi/cmi_cifar10_for_vis.sh

2. Reproduce our results

Note: This repo was refactored from our experimental code and is still under development. I'm struggling to find the appropriate hyperparams for every methods (°ー°〃). So far, we only provide the hyperparameters to reproduce CIFAR-10 results for wrn-40-2 => wrn-16-1. You may need to tune the hyper-parameters for other models and datasets. More resources will be uploaded in the future update.

To reproduce our results, please download pre-trained teacher models from Dropbox-Models (266 MB) and extract them as checkpoints/pretrained. Also a pre-inverted data set with ~50k samples is available for wrn-40-2 teacher on CIFAR-10. You can download it from Dropbox-Data (133 MB) and extract them to run/cmi-preinverted-wrn402/.

  • Non-adversarial CMI: you can train a student model on inverted data directly. It should reach the accuracy of ~87.38% on CIFAR-10 as reported in Figure 3.

    bash scripts/cmi/nonadv_cmi_cifar10_wrn402_wrn161.sh
    
  • Adversarial CMI: or you can apply the adversarial distillation based on the pre-inverted data, where ~10k (256x40) new samples will be generated to improve the student. It should reach the accuracy of ~90.01% on CIFAR-10 as reported in Table 1.

    bash scripts/cmi/adv_cmi_cifar10_wrn402_wrn161.sh
    
  • Scratch CMI: It is OK to run the cmi algorithm wihout any pre-inverted data, but the student may overfit to early samples due to the limited data amount. It should reach the accuracy of ~88.82% on CIFAR-10, slightly worse than our reported results (90.01%).

    bash scripts/cmi/scratch_cmi_cifar10_wrn402_wrn161.sh
    

3. Scratch training

python train_scratch.py --model wrn40_2 --dataset cifar10 --batch-size 256 --lr 0.1 --epoch 200 --gpu 0

4. Vanilla KD

# KD with original training data (beta>0 to use hard targets)
python vanilla_kd.py --teacher wrn40_2 --student wrn16_1 --dataset cifar10 --transfer_set cifar10 --beta 0.1 --batch-size 128 --lr 0.1 --epoch 200 --gpu 0 

# KD with unlabeled data
python vanilla_kd.py --teacher wrn40_2 --student wrn16_1 --dataset cifar10 --transfer_set cifar100 --beta 0 --batch-size 128 --lr 0.1 --epoch 200 --gpu 0 

# KD with unlabeled data from a specified folder
python vanilla_kd.py --teacher wrn40_2 --student wrn16_1 --dataset cifar10 --transfer_set run/cmi --beta 0 --batch-size 128 --lr 0.1 --epoch 200 --gpu 0 

5. Data-free KD

bash scripts/xxx/xxx.sh # e.g. scripts/zskt/zskt_cifar10_wrn402_wrn161.sh

Hyper-parameters used by different methods:

Method adv bn oh balance act cr GAN Example
DAFL - - - scripts/dafl_cifar10.sh
ZSKT - - - - - scripts/zskt_cifar10.sh
DeepInv - - - - scripts/deepinv_cifar10.sh
DFQ - - scripts/dfq_cifar10.sh
CMI - - scripts/cmi_cifar10_scratch.sh

4. Use your models/datasets

You can register your models and datasets in registry.py by modifying NORMALIZE_DICT, MODEL_DICT and get_dataset. Then you can run the above commands to train your own models. As DAFL requires intermediate features from the penultimate layer, your model should accept an return_features=True parameter and return a (logits, features) tuple for DAFL.

5. Implement your algorithms

Your algorithms should inherent datafree.synthesis.BaseSynthesizer to implement two interfaces: 1) BaseSynthesizer.synthesize takes several steps to craft new samples and return an image dict for visualization; 2) BaseSynthesizer.sample fetches a batch of training data for KD.

Citation

If you found this work useful for your research, please cite our paper:

@misc{fang2021contrastive,
      title={Contrastive Model Inversion for Data-Free Knowledge Distillation}, 
      author={Gongfan Fang and Jie Song and Xinchao Wang and Chengchao Shen and Xingen Wang and Mingli Song},
      year={2021},
      eprint={2105.08584},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Reference

Owner
ZJU-VIPA
Laboratory of Visual Intelligence and Pattern Analysis
ZJU-VIPA
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
A torch implementation of "Pixel-Level Domain Transfer"

Pixel Level Domain Transfer A torch implementation of "Pixel-Level Domain Transfer". based on dcgan.torch. Dataset The dataset used is "LookBook", fro

Fei Xia 260 Sep 02, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

CP-Cluster Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segme

Yichun Shen 41 Dec 08, 2022