Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

Related tags

Deep LearningSIB-CL
Overview

Surrogate- and Invariance-Boosted Contrastive Learning (SIB-CL)

This repository contains all source code used to generate the results in the article "Surrogate- and invariance-boosted contrastive learning for data-scarce applications in science". (url: to-be-updated)

  • The folder generate_datasets contains all numerical programs used to generate the datasets, for both Photonic Crystals (PhC) and the Time-independent Schrodinger Equation (TISE)
  • main.py is the main code used to train the neural networks (explained in detail below)

Dependencies

Please install the required Python packages: pip install -r requirements.txt

A python3 environment can be created prior to this: conda create -n sibcl python=3.8; conda activate sibcl

Assess to MATLAB is required to calculate the density-of-states (DOS) of PhCs.

Dataset Generation

Photonic Crystals (PhCs)

Relevant code stored in generate_datasets/PhC/. Periodic unit cells are defined using a level set of a Fourier sum; different unit cells can be generated using the get_random() method of the FourierPhC class defined in fourier_phc.py.

To generate the labeled PhC datasets, we first compute their band structures using MPB. This can be executed via:

For the target dataset of random fourier unit cells, python phc_gendata.py --h5filename="mf1-s1" --pol="tm" --nsam=5000 --maxF=1 --seed=1;

and for the source dataset of simple cylinders, python phc_gencylin.py --h5filename="cylin" --pol="tm" --nsam=10000;

each program will create a dataset with the eigen-frequencies, group velocities, etc, stored in a .h5 file (which can be accessed using the h5py package). We then calculate the DOS using the GRR method provided by the MATLAB code https://github.com/boyuanliuoptics/DOS-calculation/blob/master/DOS_GGR.m. To do so, we first parse the data to create the .txt files required as inputs to the program, compute the DOS using MATLAB and then add the DOS labels back to the original .h5 files. These steps will be executed automatically by simply running the shell script get_DOS.sh after modifying the h5 filename identifier defined at the top. Note that for this to run smoothly, python and MATLAB will first need to be added to PATH.

Time-independent Schrodinger Equation (TISE)

Relevant code stored in generate_datasets/TISE/. Example usage:

To generate target dataset, e.g. in 3D, python tise_gendata.py --h5filename="tise3d" --ndim 3 --nsam 5000

To generate low resolution dataset, python tise_gendata.py --h5filename='tise3d_lr' --ndim 3 --nsam 10000 --lowres --orires=32 (--orires defines the resolution of the input to the neural network)

To generate qho dataset, python tise_genqho.py --h5filename='tise2d_qho' --ndim 2 --nsam 10000

SIB-CL and baselines training

Training of the neural networks for all problems introduced in the article (i.e. PhC DOS prediction, PhC Band structure prediction, TISE ground state energy prediction using both low resolution or QHO data as surrogate) can all be executed using main.py by indicating the appropriate flags (see below). This code also allows training via the SIB-CL framework or any of the baselines, again with the use of the appropriate flag. This code also contains other prediction problems not presented in the article, such as predicting higher energy states of TISE, TISE wavefunctions and single band structure.

Important flags:

--path_to_h5: indicate directory where h5 datasets are located. The h5 filenames defined in the dataset classes in datasets_PhC_SE.py should also be modified according to the names used during dataset generation.

--predict: defines prediction task. Options: 'DOS', 'bandstructures', 'eigval', 'oneband', 'eigvec'

--train: specify if training via SIB-CL or baselines. Options: 'sibcl', 'tl', 'sl', 'ssl' ('ssl' performs regular contrastive learning without surrogate dataset). For invariance-boosted baselines, e.g. TL-I or SL-I, specify 'tl' or 'sl' here and add the relevant invariances flags (see below).

--iden: required; specify identifier for saving of models, training logs and results

Invariances flags: --translate_pbc (set this flag to include rolling translations), --pg_uniform (set this flag to uniformly sample the point group symmetry transformations), --scale (set this flag to scale unit cell - used for PhC), --rotate (set this flag to do 4-fold rotations), --flip (set this flag to perform horizontal and vertical mirrors). If --pg_uniform is used, there is no need to include --rotate and --flip.

Other optional flags can be displayed via python main.py --help. Examples of shell scripts can be found in the sh_scripts folder.

Training outputs:

By default, running main.py will create 3 subdirectories:

  • ./pretrained_models/: state dictionaries of pretrained models at various epochs indicated in the eplist variable will be saved to this directory. These models are used for further fine-tuning.
  • ./dicts/: stores the evaluation losses on the test set as dictionaries saved as .json files. The results can then be plotted using plot_results.py.
  • ./tlogs/: training curves for pre-training and fine-tuning are stored in dictionaries saved as .json files. The training curves can be plotted using get_training_logs.py. Alternatively, the --log_to_tensorboard flag can be set and training curves can be viewed using tensorboard; in this case, the dictionaries will not be generated.
You might also like...
pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning
CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning

CRLT: A Unified Contrastive Learning Toolkit for Unsupervised Text Representation Learning This repository contains the code and relevant instructions

Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive Learning".

ERICA Source code and dataset for ACL2021 paper: "ERICA: Improving Entity and Relation Understanding for Pre-trained Language Models via Contrastive L

PyTorch implementation of
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

Releases(v1.0)
Owner
Charlotte Loh
PhD candidate at MIT EECS
Charlotte Loh
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
LSTM and QRNN Language Model Toolkit for PyTorch

LSTM and QRNN Language Model Toolkit This repository contains the code used for two Salesforce Research papers: Regularizing and Optimizing LSTM Langu

Salesforce 1.9k Jan 08, 2023
Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have undergone breast cancer surgery.

Patient-Survival - Using Python, I developed a Machine Learning model using classification techniques such as Random Forest and SVM classifiers to predict a patient's survival status that have underg

Nafis Ahmed 1 Dec 28, 2021
An Unsupervised Detection Framework for Chinese Jargons in the Darknet

An Unsupervised Detection Framework for Chinese Jargons in the Darknet This repo is the Python 3 implementation of 《An Unsupervised Detection Framewor

7 Nov 08, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Implementation of Perceiver, General Perception with Iterative Attention in TensorFlow

Perceiver This Python package implements Perceiver: General Perception with Iterative Attention by Andrew Jaegle in TensorFlow. This model builds on t

Rishit Dagli 84 Oct 15, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
Send text to girlfriend in the morning

Girlfriend Text Send text to girlfriend (or really anyone with a phone number) in the morning 1. Configure your settings in utils.py. phone_number = "

Paras Adhikary 199 Oct 25, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
A simple Python library for stochastic graphical ecological models

What is Viridicle? Viridicle is a library for simulating stochastic graphical ecological models. It implements the continuous time models described in

Theorem Engine 0 Dec 04, 2021
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

2D-TAN (Optimized) Introduction This is an optimized re-implementation repository for AAAI'2020 paper: Learning 2D Temporal Localization Networks for

Joya Chen 112 Dec 31, 2022
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021