Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

Overview

CMIC-Retrieval

Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021.

Overview

Introduction

In this work, we tackle the problem of single image-based 3D shape retrieval (IBSR), where we seek to find the most matched shape of a given single 2D image from a shape repository. Most of the existing works learn to embed 2D images and 3D shapes into a common feature space and perform metric learning using a triplet loss. Inspired by the great success in recent contrastive learning works on self-supervised representation learning, we propose a novel IBSR pipeline leveraging contrastive learning. We note that adopting such cross-modal contrastive learning between 2D images and 3D shapes into IBSR tasks is non-trivial and challenging: contrastive learning requires very strong data augmentation in constructed positive pairs to learn the feature invariance, whereas traditional metric learning works do not have this requirement. However, object shape and appearance are entangled in 2D query images, thus making the learning task more difficult than contrasting single-modal data. To mitigate the challenges, we propose to use multi-view grayscale rendered images from the 3D shapes as a shape representation. We then introduce a strong data augmentation technique based on color transfer, which can significantly but naturally change the appearance of the query image, effectively satisfying the need for contrastive learning. Finally, we propose to incorporate a novel category-level contrastive loss that helps distinguish similar objects from different categories, in addition to classic instance-level contrastive loss. Our experiments demonstrate that our approach achieves the best performance on all the three popular IBSR benchmarks, including Pix3D, Stanford Cars, and Comp Cars, outperforming the previous state-of-the-art from 4% - 15% on retrieval accuracy.

About this repository

This repository provides data, pre-trained models and code.

Citations

@inProceedings{lin2021cmic,
	title={Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning},
	author={Lin, Ming-Xian and Yang, Jie and Wang, He and Lai, Yu-Kun and Jia, Rongfei and Zhao, Binqiang and Gao, Lin},
	year={2021},
	booktitle={International Conference on Computer Vision (ICCV)}
}

Updates

  • [Oct 1, 2021] Preliminary version of Data and Code released. For more code and data, coming soon. Please follow our updates.
Owner
Intelligent Graphics Laboratory, Institute of Computing Technology
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
๐Ÿ•ต Artificial Intelligence for social control of public administration

Non-tech crash course into Operaรงรฃo Serenata de Amor Tech crash course into Operaรงรฃo Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Pytorch implementation of NEGEV method. Paper: "Negative Evidence Matters in Interpretable Histology Image Classification".

Pytorch 1.10.0 code for: Negative Evidence Matters in Interpretable Histology Image Classification (https://arxiv. org/abs/xxxx.xxxxx) Citation: @arti

Soufiane Belharbi 4 Dec 01, 2022
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Source code for Zalo AI 2021 submission

zalo_ltr_2021 Source code for Zalo AI 2021 submission Solution: Pipeline We use the pipepline in the picture below: Our pipeline is combination of BM2

128 Dec 27, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
source code the paper Fast and Robust Iterative Closet Point.

Fast-Robust-ICP This repository includes the source code the paper Fast and Robust Iterative Closet Point. Authors: Juyong Zhang, Yuxin Yao, Bailin De

yaoyuxin 320 Dec 28, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022
2021 Artificial Intelligence Diabetes Datathon

A.I.D.D. 2021 2021 Artificial Intelligence Diabetes Datathon A.I.D.D. 2021์€ โ€˜2021 ์ธ๊ณต์ง€๋Šฅ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ ๊ตฌ์ถ•์‚ฌ์—…โ€™์„ ํ†ตํ•ด ๋งŒ๋“ค์–ด์ง„ ํ•™์Šต์šฉ ๋ฐ์ดํ„ฐ๋ฅผ ํ™œ์šฉํ•˜์—ฌ ๋‹น๋‡จ๋ณ‘์„ ํšจ๊ณผ์ ์œผ๋กœ ์˜ˆ์ธกํ•  ์ˆ˜ ์žˆ๋Š”๊ฐ€์— ๋Œ€ํ•œ A

2 Dec 27, 2021
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021

Contrastive Learning for Many-to-many Multilingual Neural Machine Translation(mCOLT/mRASP2), ACL2021 The code for training mCOLT/mRASP2, a multilingua

104 Jan 01, 2023