Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

Overview

For SwapNet

Create a list.txt file containing all the images to process. This can be done with the GNU find command:

find path/to/input/folder -name '*.jpg' -o -name '*.png' > list.txt

Then run this to get the clothing segmentations

python evaluate_parsing_JPPNet-s2.py -d path/to/texture -l path/to/list.txt -o path/to/clothing

Joint Body Parsing & Pose Estimation Network (JPPNet)

Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin, "Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark", T-PAMI 2018.

Introduction

JPPNet is a state-of-art deep learning methord for human parsing and pose estimation built on top of Tensorflow.

This novel joint human parsing and pose estimation network incorporates the multiscale feature connections and iterative location refinement in an end-to-end framework to investigate efficient context modeling and then enable parsing and pose tasks that are mutually beneficial to each other. This unified framework achieves state-of-the-art performance for both human parsing and pose estimation tasks.

This distribution provides a publicly available implementation for the key model ingredients reported in our latest paper which is accepted by T-PAMI 2018.

We simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. There is also a public implementation of this self-supervised structure-sensitive JPPNet (SS-JPPNet).

Look into People (LIP) Dataset

The SSL is trained and evaluated on our LIP dataset for human parsing. Please check it for more model details. The dataset is also available at google drive and baidu drive.

Pre-trained models

We have released our trained models of JPPNet on LIP dataset at google drive and baidu drive.

Inference

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Prepare the images and store in $HOME/datasets.
  3. Run evaluate_pose_JPPNet-s2.py for pose estimation and evaluate_parsing_JPPNet-s2.py for human parsing.
  4. The results are saved in $HOME/output

Training

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Download LIP dataset or prepare your own data and store in $HOME/datasets.
  3. For LIP dataset, we have provided images, parsing labels, lists and the left-right flipping labels (labels_rev) for data augmentation. You need to generate the heatmaps of pose labels. We have provided a script for reference.
  4. Run train_JPPNet-s2.py to train the JPPNet with two refinement stages.
  5. Use evaluate_pose_JPPNet-s2.py and evaluate_parsing_JPPNet-s2.py to generate the results or evaluate the trained models.
  6. Note that the LIPReader class is only suit for labels in LIP for the left-right flipping augmentation. If you want to train on other datasets with different labels, you may have to re-write an image reader class.

Citation

If you use this code for your research, please cite our papers.

@article{liang2018look,
  title={Look into Person: Joint Body Parsing \& Pose Estimation Network and a New Benchmark},
  author={Liang, Xiaodan and Gong, Ke and Shen, Xiaohui and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2018},
  publisher={IEEE}
}

@InProceedings{Gong_2017_CVPR,
  author = {Gong, Ke and Liang, Xiaodan and Zhang, Dongyu and Shen, Xiaohui and Lin, Liang},
  title = {Look Into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {July},
  year = {2017}
}
Owner
Andrew Jong
Master's student at Carnegie Mellon in Robotics and AI. Studies multi-agent UAVs for wildfire applications.
Andrew Jong
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CNPs), Neural Processes (NPs), Attentive Neural Processes (ANPs).

The Neural Process Family This repository contains notebook implementations of the following Neural Process variants: Conditional Neural Processes (CN

DeepMind 892 Dec 28, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Weakly-supervised object detection.

Wetectron Wetectron is a software system that implements state-of-the-art weakly-supervised object detection algorithms. Project CVPR'20, ECCV'20 | Pa

NVIDIA Research Projects 342 Jan 05, 2023
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
Official implementation of GraphMask as presented in our paper Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking.

GraphMask This repository contains an implementation of GraphMask, the interpretability technique for graph neural networks presented in our ICLR 2021

Michael Schlichtkrull 29 Sep 02, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022