A graphical Semi-automatic annotation tool based on labelImg and Yolov5

Overview

labelGo

Guide Language:简体中文

A graphical Semi-automatic annotation tool based on labelImg and Yolov5

Semi-automatic annotation of datasets by existing yolov5 pytorch models

image

Attention

If there is a problem, please put it forward in the issue

Please put classes.txt under the marked dataset folder in advance

The annotation file is saved in the same location as the picture folder

Recommended version of python: python 3.8

Recommended for conda environments

Installation and use

1.Fetching projects from git

git clone https://github.com/cnyvfang/labelGo-Yolov5AutoLabelImg.git

2.Switching the operating directory to the project directory

cd labelGo-Yolov5AutoLabelImg

3.Installation environment

pip install -r requirements.txt

4.Launching applications

python labelGo.py

5. Click on the "Open directory" button to select the folder where the images are stored

6. Click on the "Auto Annotate" button to confirm that the information is correct and then select the trained yolov5 pytorch model to complete the auto annotation

7. Adjust the automatic annotation results according to the actual requirements and save them

Comments
  • IndexError: list index out of range

    IndexError: list index out of range

    C:\Users\60332\Desktop\labelGo-Yolov5AutoLabelImg>python labelGo.py
    Traceback (most recent call last):
      File "labelGo.py", line 1316, in open_dir_dialog
        self.import_dir_images(target_dir_path)
      File "labelGo.py", line 1384, in import_dir_images
        self.open_next_image()
      File "labelGo.py", line 1458, in open_next_image
        self.load_file(filename)
      File "labelGo.py", line 1137, in load_file
        self.show_bounding_box_from_annotation_file(file_path)
      File "labelGo.py", line 1180, in show_bounding_box_from_annotation_file
        self.load_yolo_txt_by_filename(txt_path)
      File "labelGo.py", line 1639, in load_yolo_txt_by_filename
        t_yolo_parse_reader = YoloReader(txt_path, self.image)
      File "C:\Users\60332\Desktop\labelGo-Yolov5AutoLabelImg\libs\yolo_io.py", line 112, in __init__
        self.parse_yolo_format()
      File "C:\Users\60332\Desktop\labelGo-Yolov5AutoLabelImg\libs\yolo_io.py", line 143, in parse_yolo_format
        label, x_min, y_min, x_max, y_max = self.yolo_line_to_shape(class_index, x_center, y_center, w, h)
      File "C:\Users\60332\Desktop\labelGo-Yolov5AutoLabelImg\libs\yolo_io.py", line 125, in yolo_line_to_shape
        label = self.classes[int(class_index)]
    IndexError: list index out of range
    
    opened by WangRongsheng 5
  • 运行 python labelGo.py 的时候出现以下错误,所有的包都已经成功安装了

    运行 python labelGo.py 的时候出现以下错误,所有的包都已经成功安装了

    报错如下

    Traceback (most recent call last):
      File "labelGo.py", line 1744, in <module>
        sys.exit(main())
      File "labelGo.py", line 1738, in main
        app, _win = get_main_app(sys.argv)
      File "labelGo.py", line 1729, in get_main_app
        win = MainWindow(args.image_dir,
      File "labelGo.py", line 281, in __init__
        edit_mode = action(get_str('editBox'), self.set_edit_mode,
      File "labelGo.py", line 97, in <lambda>
        get_str = lambda str_id: self.string_bundle.get_string(str_id)
      File "D:\AnnotationsTools\labelGo-Yolov5AutoLabelImg-master\libs\stringBundle.py", line 47, in get_string
        assert(string_id in self.id_to_message), "Missing string id : " + string_id
    AssertionError: Missing string id : editBox
    

    请问如何解决?或者能通过docker安装吗?

    opened by XuechengWu 3
  • AttributeError: Can't get attribute 'SPPF'

    AttributeError: Can't get attribute 'SPPF'

    I successfully installed and configured the environment according to the instructions on GitHub, and then reported an error after running
    “AttributeError: Can't get attribute 'SPPF' on <module 'models.common'”, I refer to the link below to try to solve this problem https://blog.csdn.net/cjy_colorful0806/article/details/120930204

    But when encountering an error “AttributeError: ‘Upsample‘ object has no attribute ‘recompute_scale_factor‘” I refer to the link below to try to solve this problem https://blog.csdn.net/qq_35207086/article/details/123879980

    But when encountering an error “RuntimeError: shape '[1, 3, 1, 1, 2]' is invalid for input of size 28224”

    I have tried several models such as: yolov5l.pt、yolov5l6.pt、yolov5s.pt、yolov5x6.pt. How can I run this project??

    opened by xudh1991 2
  • AssertionError: Missing string id : editBox

    AssertionError: Missing string id : editBox

    (yolo) C:\Users\z249\Desktop\labelGo-Yolov5AutoLabelImg-master>python labelGo.py Traceback (most recent call last): File "labelGo.py", line 1744, in sys.exit(main()) File "labelGo.py", line 1738, in main app, _win = get_main_app(sys.argv) File "labelGo.py", line 1729, in get_main_app win = MainWindow(args.image_dir, File "labelGo.py", line 281, in init edit_mode = action(get_str('editBox'), self.set_edit_mode, File "labelGo.py", line 97, in get_str = lambda str_id: self.string_bundle.get_string(str_id) File "C:\Users\z249\Desktop\labelGo-Yolov5AutoLabelImg-master\libs\stringBundle.py", line 47, in get_string assert(string_id in self.id_to_message), "Missing string id : " + string_id AssertionError: Missing string id : editBox

    opened by fanshu-520 2
  • IndexError: list index out of range

    IndexError: list index out of range

    File "D:/pythonProject/labelGo-Yolov5AutoLabelImg-master/labelGo.py", line 1390, in auto_label self.import_dir_images(self.last_open_dir) File "D:/pythonProject/labelGo-Yolov5AutoLabelImg-master/labelGo.py", line 1406, in import_dir_images self.open_next_image() File "D:/pythonProject/labelGo-Yolov5AutoLabelImg-master/labelGo.py", line 1480, in open_next_image self.load_file(filename) File "D:/pythonProject/labelGo-Yolov5AutoLabelImg-master/labelGo.py", line 1163, in load_file self.show_bounding_box_from_annotation_file(file_path) File "D:/pythonProject/labelGo-Yolov5AutoLabelImg-master/labelGo.py", line 1206, in show_bounding_box_from_annotation_file self.load_yolo_txt_by_filename(txt_path) File "D:/pythonProject/labelGo-Yolov5AutoLabelImg-master/labelGo.py", line 1661, in load_yolo_txt_by_filename t_yolo_parse_reader = YoloReader(txt_path, self.image) File "D:\pythonProject\labelGo-Yolov5AutoLabelImg-master\libs\yolo_io.py", line 112, in init self.parse_yolo_format() File "D:\pythonProject\labelGo-Yolov5AutoLabelImg-master\libs\yolo_io.py", line 143, in parse_yolo_format label, x_min, y_min, x_max, y_max = self.yolo_line_to_shape(class_index, x_center, y_center, w, h) File "D:\pythonProject\labelGo-Yolov5AutoLabelImg-master\libs\yolo_io.py", line 125, in yolo_line_to_shape label = self.classes[int(class_index)] IndexError: list index out of range

    opened by JerryHao-art 1
  • 中文支持有问题

    中文支持有问题

    按照说明完成安装,环境conda的python3.8 正常运行英文版成功。 改中文版出现问题: 编辑文件\libs\stringBundle.py的第52行, 将字符串":/strings"替换为":/strings-zh-CN"即可。 最后再次运行后报错 Traceback (most recent call last): File "labelGo.py", line 1744, in <module> sys.exit(main()) File "labelGo.py", line 1738, in main app, _win = get_main_app(sys.argv) File "labelGo.py", line 1729, in get_main_app win = MainWindow(args.image_dir, File "labelGo.py", line 281, in __init__ edit_mode = action(get_str('editBox'), self.set_edit_mode, File "labelGo.py", line 97, in <lambda> get_str = lambda str_id: self.string_bundle.get_string(str_id) File "D:\SynologyDrive\*********\labelGo-Yolov5AutoLabelImg\libs\stringBundle.py", line 47, in get_string assert(string_id in self.id_to_message), "Missing string id : " + string_id AssertionError: Missing string id : editBox

    opened by Iceprism 1
  • Can't get attribute 'SPPF'

    Can't get attribute 'SPPF'

    Thanks for sharing your code. I am trying to test run your code with yolov5s.pt and some data, but getting the error message: Can't get attribute 'SPPF'". Do you have any insight into what could be the source of the problem. Also in Readm, there is a note stating "Please put classes.txt under the marked dataset folder in advance". It is not clear to me what is marked dataset. Should dataset be labeled first before running your code? Please elaborate. Or could you send me images and pt file, (along with class.txt) used in your demo (gif)? Thanks in advance.

    opened by chyphen7 1
  • labelGo autolabel doesn't work with  newest model output from YOLOv5

    labelGo autolabel doesn't work with newest model output from YOLOv5

    opened by TECOLOGYxyz 1
  • 关于工具使用和个人的一些问题?

    关于工具使用和个人的一些问题?

    大佬你好,你是西南大学rm战队的成员吗?我是中北大学rm战队视觉组成员,现在负责用神经网络识别装甲板,目前已经用trt加速yolov5并部署到win下,后期会迁移到linux下,我感觉你这个工具挺好用的,就是我想问一下生成的标签格式就已经是yolo的吗,还是后期需要自己转?还有方便的话可以加个微信就数据集制作这块交流一下吗?

    opened by Hezhexi2002 1
  • settings.py

    settings.py

    What does self.path = os.path.join (home, '.labelImgSettings.pkl') mean in ClassSettings() inside the settings.py file? Where is the .labelImgSettings.pkl file?

    opened by ghost 0
  • QBackingStore::endPaint() called with active painter; did you forget to destroy it or call QPainter::end() on it?

    QBackingStore::endPaint() called with active painter; did you forget to destroy it or call QPainter::end() on it?

    [email protected]:~/Documents/labelGo-Yolov5AutoLabelImg$ python3 labelGo.py Warning: Ignoring XDG_SESSION_TYPE=wayland on Gnome. Use QT_QPA_PLATFORM=wayland to run on Wayland anyway. Traceback (most recent call last): File "/home/orange/Documents/labelGo-Yolov5AutoLabelImg/libs/canvas.py", line 506, in paintEvent p.drawLine(self.prev_point.x(), 0, self.prev_point.x(), self.pixmap.height()) TypeError: arguments did not match any overloaded call: drawLine(self, QLineF): argument 1 has unexpected type 'float' drawLine(self, QLine): argument 1 has unexpected type 'float' drawLine(self, int, int, int, int): argument 1 has unexpected type 'float' drawLine(self, QPoint, QPoint): argument 1 has unexpected type 'float' drawLine(self, Union[QPointF, QPoint], Union[QPointF, QPoint]): argument 1 has unexpected type 'float' QBackingStore::endPaint() called with active painter; did you forget to destroy it or call QPainter::end() on it? QBackingStore::endPaint() called with active painter; did you forget to destroy it or call QPainter::end() on it? QPainter::begin: Painter already active Segmentation fault (core dumped)

    opened by f2d73 0
  • AttributeError: Can't get attribute 'MP'

    AttributeError: Can't get attribute 'MP'

    用的是yolov7训练好的pt,自动标注报错

    (label) C:\Users\CAN\Documents\yolo\labelGo-Yolov5AutoLabelImg-master>python labelGo.py YOLOv5 2022-10-14 torch 1.13.0+cu117 CUDA:0 (NVIDIA GeForce RTX 3050 Laptop GPU, 4095.5MB)

    Traceback (most recent call last): File "C:\Users\CAN\Documents\yolo\labelGo-Yolov5AutoLabelImg-master\labelGo.py", line 1388, in auto_label run(**vars(opt)) File "C:\Users\CAN\anaconda3\envs\label\lib\site-packages\torch\autograd\grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "C:\Users\CAN\Documents\yolo\labelGo-Yolov5AutoLabelImg-master\libs\autoLabeler.py", line 61, in run model = attempt_load(weights, map_location=device) # load FP32 model File "C:\Users\CAN\Documents\yolo\labelGo-Yolov5AutoLabelImg-master\libs\models\experimental.py", line 96, in attempt_load ckpt = torch.load(attempt_download(w), map_location=map_location) # load File "C:\Users\CAN\anaconda3\envs\label\lib\site-packages\torch\serialization.py", line 789, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "C:\Users\CAN\anaconda3\envs\label\lib\site-packages\torch\serialization.py", line 1131, in _load result = unpickler.load() File "C:\Users\CAN\anaconda3\envs\label\lib\site-packages\torch\serialization.py", line 1124, in find_class return super().find_class(mod_name, name) AttributeError: Can't get attribute 'MP' on <module 'models.common' from 'C:\Users\CAN\Documents\yolo\labelGo-Yolov5AutoLabelImg-master\libs\models\common.py'>

    opened by lemonvallelonga 0
  • 在Ubuntu18下使用出现这个问题,请问怎么解决?

    在Ubuntu18下使用出现这个问题,请问怎么解决?

    qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it was found. This application failed to start because no Qt platform plugin could be initialized. Reinstalling the application may fix this problem.

    Available platform plugins are: eglfs, linuxfb, minimal, minimalegl, offscreen, vnc, wayland-egl, wayland, wayland-xcomposite-egl, wayland-xcomposite-glx, webgl, xcb.

    opened by wxymmecho 0
  • 最新版本的 requirements.txt 似乎有些问题,在 anaconda / 原生 环境下都无法安装成功。

    最新版本的 requirements.txt 似乎有些问题,在 anaconda / 原生 环境下都无法安装成功。

    Using cached https://pypi.tuna.tsinghua.edu.cn/packages/e1/57/2023316578646e1adab903caab714708422f83a57f97eb34a5d13510f4e1/PyQt5-5.15.7.tar.gz (3.2 MB) Installing build dependencies ... done Getting requirements to build wheel ... done Preparing metadata (pyproject.toml) ... error error: subprocess-exited-with-error

    × Preparing metadata (pyproject.toml) did not run successfully. │ exit code: 1 ╰─> [29 lines of output] Traceback (most recent call last): File "/root/anaconda3/envs/labelGo/lib/python3.8/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 144, in prepare_metadata_for_build_wheel hook = backend.prepare_metadata_for_build_wheel AttributeError: module 'sipbuild.api' has no attribute 'prepare_metadata_for_build_wheel'

      During handling of the above exception, another exception occurred:
      
      Traceback (most recent call last):
        File "/root/anaconda3/envs/labelGo/lib/python3.8/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 351, in <module>
          main()
        File "/root/anaconda3/envs/labelGo/lib/python3.8/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 333, in main
          json_out['return_val'] = hook(**hook_input['kwargs'])
        File "/root/anaconda3/envs/labelGo/lib/python3.8/site-packages/pip/_vendor/pep517/in_process/_in_process.py", line 148, in prepare_metadata_for_build_wheel
          whl_basename = backend.build_wheel(metadata_directory, config_settings)
        File "/tmp/pip-build-env-v9nl7vbu/overlay/lib/python3.8/site-packages/sipbuild/api.py", line 46, in build_wheel
          project = AbstractProject.bootstrap('wheel',
        File "/tmp/pip-build-env-v9nl7vbu/overlay/lib/python3.8/site-packages/sipbuild/abstract_project.py", line 87, in bootstrap
          project.setup(pyproject, tool, tool_description)
        File "/tmp/pip-build-env-v9nl7vbu/overlay/lib/python3.8/site-packages/sipbuild/project.py", line 585, in setup
          self.apply_user_defaults(tool)
        File "project.py", line 69, in apply_user_defaults
          super().apply_user_defaults(tool)
        File "/tmp/pip-build-env-v9nl7vbu/overlay/lib/python3.8/site-packages/pyqtbuild/project.py", line 70, in apply_user_defaults
          super().apply_user_defaults(tool)
        File "/tmp/pip-build-env-v9nl7vbu/overlay/lib/python3.8/site-packages/sipbuild/project.py", line 236, in apply_user_defaults
          self.builder.apply_user_defaults(tool)
        File "/tmp/pip-build-env-v9nl7vbu/overlay/lib/python3.8/site-packages/pyqtbuild/builder.py", line 69, in apply_user_defaults
          raise PyProjectOptionException('qmake',
      sipbuild.pyproject.PyProjectOptionException
      [end of output]
    

    note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed

    × Encountered error while generating package metadata. ╰─> See above for output.

    note: This is an issue with the package mentioned above, not pip. hint: See above for details.

    opened by sci-law 0
Releases(v5_v5_source)
Owner
EricFang
Coding the world.
EricFang
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
"Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices", official implementation

Moshpit SGD: Communication-Efficient Decentralized Training on Heterogeneous Unreliable Devices This repository contains the official PyTorch implemen

Yandex Research 21 Oct 18, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Visualization toolkit for neural networks in PyTorch! Demo -->

FlashTorch A Python visualization toolkit, built with PyTorch, for neural networks in PyTorch. Neural networks are often described as "black box". The

Misa Ogura 692 Dec 29, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Real-Time Social Distance Monitoring tool using Computer Vision

Social Distance Detector A Real-Time Social Distance Monitoring Tool Table of Contents Motivation YOLO Theory Detection Output Tech Stack Functionalit

Pranav B 13 Oct 14, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
A transformer which can randomly augment VOC format dataset (both image and bbox) online.

VocAug It is difficult to find a script which can augment VOC-format dataset, especially the bbox. Or find a script needs complex requirements so it i

Coder.AN 1 Mar 05, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022