Score refinement for confidence-based 3D multi-object tracking

Related tags

Deep LearningCBMOT
Overview

Score refinement for confidence-based 3D multi-object tracking

Our video gives a brief explanation of our Method.

This is the official code for the paper:

Score refinement for confidence-based 3D multi-object tracking,
Nuri Benbarka, Jona Schröder, Andreas Zell,
arXiv technical report (arXiv 2107.04327)

@article{benbarka2021score,
    title={Score refinement for confidence-based 3D multi-object tracking},
    author={Benbarka, Nuri and Schr{\"o}der, Jona and Zell, Andreas},
    journal={arXiv preprint arXiv:2107.04327},
    year={2021}
}

It also contains the code of the B.Sc. thesis:

Learning score update functions for confidence-based MOT, Anouar Gherri,

@article{gherri2021learning,
    title = {Learning score update functions for confidence-based MOT},
    author = {Gherri, Anouar},
    year = {2021}        
}

Contact

Feel free to contact us for any questions!

Nuri Benbarka [email protected],

Jona Schröder [email protected],

Anouar Gherri [email protected],

Abstract

Multi-object tracking is a critical component in autonomous navigation, as it provides valuable information for decision-making. Many researchers tackled the 3D multi-object tracking task by filtering out the frame-by-frame 3D detections; however, their focus was mainly on finding useful features or proper matching metrics. Our work focuses on a neglected part of the tracking system: score refinement and tracklet termination. We show that manipulating the scores depending on time consistency while terminating the tracklets depending on the tracklet score improves tracking results. We do this by increasing the matched tracklets' score with score update functions and decreasing the unmatched tracklets' score. Compared to count-based methods, our method consistently produces better AMOTA and MOTA scores when utilizing various detectors and filtering algorithms on different datasets. The improvements in AMOTA score went up to 1.83 and 2.96 in MOTA. We also used our method as a late-fusion ensembling method, and it performed better than voting-based ensemble methods by a solid margin. It achieved an AMOTA score of 67.6 on nuScenes test evaluation, which is comparable to other state-of-the-art trackers.

Results

NuScenes

Detector Split Update function modality AMOTA AMOTP MOTA
CenterPoint Val - Lidar 67.3 57.4 57.3
CenterTrack Val - Camera 17.8 158.0 15.0
CenterPoint Val Multiplication Lidar 68.8 58.9 60.2
CenterPoint + CenterTrack Val Multiplication Fusion 72.1 53.3 58.5
CenterPoint + CenterTrack Val Neural network Fusion 72.0 48.7 58.2

The results are different than what is reported in the paper because of optimizing NUSCENE_CLS_VELOCITY_ERRORs, and using the new detection results from CenterPoint.

Installation

# basic python libraries
conda create --name CBMOT python=3.7
conda activate CBMOT
git clone https://github.com/cogsys-tuebingen/CBMOT.git
cd CBMOT
pip install -r requirements.txt

Create a folder to place the dataset called data. Download the NuScenes dataset and then prepare it as was instructed in nuScenes devkit. Make a hyperlink that points to the prepared dataset.

mkdir data
cd data
ln -s  LINK_TO_NUSCENES_DATA_SET ./nuScenes
cd ..

Ceate a folder named resources.

mkdir resources

Download the detections/tracklets and place them in the resources folder. We used CenterPoint detections (LIDAR) and CenterTrack tracklets (Camera). If you don't want to run CenterTrack yourself, we have the tracklets here. For the experiment with the learned score update function, please download the network's weights from here.

Usage

We made a bash script Results.sh to get the result table above. Running the script should take approximately 4 hours.

bash Results.sh

Learning update function model

In the directory learning_score_update_function

  • open lsuf_train
  • put your CMOT project path into CMOT_path
  • run the file to generate the model from the best results
  • feel free to experiment yourself different parameters

Acknowledgment

This project is not possible without multiple great open sourced codebases. We list some notable examples below.

CBMOT is deeply influenced by the following projects. Please consider citing the relevant papers.

@article{zhu2019classbalanced,
  title={Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection},
  author={Zhu, Benjin and Jiang, Zhengkai and Zhou, Xiangxin and Li, Zeming and Yu, Gang},
  journal={arXiv:1908.09492},
  year={2019}
}

@article{lang2019pillar,
   title={PointPillars: Fast Encoders for Object Detection From Point Clouds},
   journal={CVPR},
   author={Lang, Alex H. and Vora, Sourabh and Caesar, Holger and Zhou, Lubing and Yang, Jiong and Beijbom, Oscar},
   year={2019},
}

@inproceedings{yin2021center,
  title={Center-based 3d object detection and tracking},
  author={Yin, Tianwei and Zhou, Xingyi and Krahenbuhl, Philipp},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11784--11793},
  year={2021}
}

@article{zhou2020tracking,
  title={Tracking Objects as Points},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  journal={arXiv:2004.01177},
  year={2020}
}

@inproceedings{weng20203d,
  title={3d multi-object tracking: A baseline and new evaluation metrics},
  author={Weng, Xinshuo and Wang, Jianren and Held, David and Kitani, Kris},
  booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={10359--10366},
  year={2020},
  organization={IEEE}
}

@article{chiu2020probabilistic,
  title={Probabilistic 3D Multi-Object Tracking for Autonomous Driving},
  author={Chiu, Hsu-kuang and Prioletti, Antonio and Li, Jie and Bohg, Jeannette},
  journal={arXiv preprint arXiv:2001.05673},
  year={2020}
}

Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
Exemplo de implementação do padrão circuit breaker em python

fast-circuit-breaker Circuit breakers existem para permitir que uma parte do seu sistema falhe sem destruir todo seu ecossistema de serviços. Michael

James G Silva 17 Nov 10, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Computationally efficient algorithm that identifies boundary points of a point cloud.

BoundaryTest Included are MATLAB and Python packages, each of which implement efficient algorithms for boundary detection and normal vector estimation

6 Dec 09, 2022
Workshop Materials Delivered on 28/02/2022

intro-to-cnn-p1 Repo for hosting workshop materials delivered on 28/02/2022 Questions you will answer in this workshop Learning Objectives What are co

Beginners Machine Learning 5 Feb 28, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
PyTorch code of paper "LiVLR: A Lightweight Visual-Linguistic Reasoning Framework for Video Question Answering"

LiVLR-VideoQA We propose a Lightweight Visual-Linguistic Reasoning framework (LiVLR) for VideoQA. The overview of LiVLR: Evaluation on MSRVTT-QA Datas

JJ Jiang 7 Dec 30, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Reading list for research topics in Masked Image Modeling

awesome-MIM Reading list for research topics in Masked Image Modeling(MIM). We list the most popular methods for MIM, if I missed something, please su

ligang 231 Dec 07, 2022
Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data

Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote Sensing Data This is the official PyTorch implementation of the SeCo paper: @articl

ElementAI 101 Dec 12, 2022
Object Detection with YOLOv3

Object Detection with YOLOv3 Bu projede YOLOv3-608 modeli kullanılmıştır. Requirements Python 3.8 OpenCV Numpy Documentation Yolo ile ilgili detaylı b

Ayşe Konuş 0 Mar 27, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
novel deep learning research works with PaddlePaddle

Research 发布基于飞桨的前沿研究工作,包括CV、NLP、KG、STDM等领域的顶会论文和比赛冠军模型。 目录 计算机视觉(Computer Vision) 自然语言处理(Natrual Language Processing) 知识图谱(Knowledge Graph) 时空数据挖掘(Spa

1.5k Dec 29, 2022
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
ObjectDrawer-ToolBox: a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system

ObjectDrawer-ToolBox is a graphical image annotation tool to generate ground plane masks for a 3D object reconstruction system, Object Drawer.

77 Jan 05, 2023
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021