Score refinement for confidence-based 3D multi-object tracking

Related tags

Deep LearningCBMOT
Overview

Score refinement for confidence-based 3D multi-object tracking

Our video gives a brief explanation of our Method.

This is the official code for the paper:

Score refinement for confidence-based 3D multi-object tracking,
Nuri Benbarka, Jona Schröder, Andreas Zell,
arXiv technical report (arXiv 2107.04327)

@article{benbarka2021score,
    title={Score refinement for confidence-based 3D multi-object tracking},
    author={Benbarka, Nuri and Schr{\"o}der, Jona and Zell, Andreas},
    journal={arXiv preprint arXiv:2107.04327},
    year={2021}
}

It also contains the code of the B.Sc. thesis:

Learning score update functions for confidence-based MOT, Anouar Gherri,

@article{gherri2021learning,
    title = {Learning score update functions for confidence-based MOT},
    author = {Gherri, Anouar},
    year = {2021}        
}

Contact

Feel free to contact us for any questions!

Nuri Benbarka [email protected],

Jona Schröder [email protected],

Anouar Gherri [email protected],

Abstract

Multi-object tracking is a critical component in autonomous navigation, as it provides valuable information for decision-making. Many researchers tackled the 3D multi-object tracking task by filtering out the frame-by-frame 3D detections; however, their focus was mainly on finding useful features or proper matching metrics. Our work focuses on a neglected part of the tracking system: score refinement and tracklet termination. We show that manipulating the scores depending on time consistency while terminating the tracklets depending on the tracklet score improves tracking results. We do this by increasing the matched tracklets' score with score update functions and decreasing the unmatched tracklets' score. Compared to count-based methods, our method consistently produces better AMOTA and MOTA scores when utilizing various detectors and filtering algorithms on different datasets. The improvements in AMOTA score went up to 1.83 and 2.96 in MOTA. We also used our method as a late-fusion ensembling method, and it performed better than voting-based ensemble methods by a solid margin. It achieved an AMOTA score of 67.6 on nuScenes test evaluation, which is comparable to other state-of-the-art trackers.

Results

NuScenes

Detector Split Update function modality AMOTA AMOTP MOTA
CenterPoint Val - Lidar 67.3 57.4 57.3
CenterTrack Val - Camera 17.8 158.0 15.0
CenterPoint Val Multiplication Lidar 68.8 58.9 60.2
CenterPoint + CenterTrack Val Multiplication Fusion 72.1 53.3 58.5
CenterPoint + CenterTrack Val Neural network Fusion 72.0 48.7 58.2

The results are different than what is reported in the paper because of optimizing NUSCENE_CLS_VELOCITY_ERRORs, and using the new detection results from CenterPoint.

Installation

# basic python libraries
conda create --name CBMOT python=3.7
conda activate CBMOT
git clone https://github.com/cogsys-tuebingen/CBMOT.git
cd CBMOT
pip install -r requirements.txt

Create a folder to place the dataset called data. Download the NuScenes dataset and then prepare it as was instructed in nuScenes devkit. Make a hyperlink that points to the prepared dataset.

mkdir data
cd data
ln -s  LINK_TO_NUSCENES_DATA_SET ./nuScenes
cd ..

Ceate a folder named resources.

mkdir resources

Download the detections/tracklets and place them in the resources folder. We used CenterPoint detections (LIDAR) and CenterTrack tracklets (Camera). If you don't want to run CenterTrack yourself, we have the tracklets here. For the experiment with the learned score update function, please download the network's weights from here.

Usage

We made a bash script Results.sh to get the result table above. Running the script should take approximately 4 hours.

bash Results.sh

Learning update function model

In the directory learning_score_update_function

  • open lsuf_train
  • put your CMOT project path into CMOT_path
  • run the file to generate the model from the best results
  • feel free to experiment yourself different parameters

Acknowledgment

This project is not possible without multiple great open sourced codebases. We list some notable examples below.

CBMOT is deeply influenced by the following projects. Please consider citing the relevant papers.

@article{zhu2019classbalanced,
  title={Class-balanced Grouping and Sampling for Point Cloud 3D Object Detection},
  author={Zhu, Benjin and Jiang, Zhengkai and Zhou, Xiangxin and Li, Zeming and Yu, Gang},
  journal={arXiv:1908.09492},
  year={2019}
}

@article{lang2019pillar,
   title={PointPillars: Fast Encoders for Object Detection From Point Clouds},
   journal={CVPR},
   author={Lang, Alex H. and Vora, Sourabh and Caesar, Holger and Zhou, Lubing and Yang, Jiong and Beijbom, Oscar},
   year={2019},
}

@inproceedings{yin2021center,
  title={Center-based 3d object detection and tracking},
  author={Yin, Tianwei and Zhou, Xingyi and Krahenbuhl, Philipp},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11784--11793},
  year={2021}
}

@article{zhou2020tracking,
  title={Tracking Objects as Points},
  author={Zhou, Xingyi and Koltun, Vladlen and Kr{\"a}henb{\"u}hl, Philipp},
  journal={arXiv:2004.01177},
  year={2020}
}

@inproceedings{weng20203d,
  title={3d multi-object tracking: A baseline and new evaluation metrics},
  author={Weng, Xinshuo and Wang, Jianren and Held, David and Kitani, Kris},
  booktitle={2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)},
  pages={10359--10366},
  year={2020},
  organization={IEEE}
}

@article{chiu2020probabilistic,
  title={Probabilistic 3D Multi-Object Tracking for Autonomous Driving},
  author={Chiu, Hsu-kuang and Prioletti, Antonio and Li, Jie and Bohg, Jeannette},
  journal={arXiv preprint arXiv:2001.05673},
  year={2020}
}

Owner
Cognitive Systems Research Group
Autonomous Mobile Robots; Bioinformatics; Chemo- and Geoinformatics; Evolutionary Algorithms; Machine Learning
Cognitive Systems Research Group
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Research on Event Accumulator Settings for Event-Based SLAM

Research on Event Accumulator Settings for Event-Based SLAM This is the source code for paper "Research on Event Accumulator Settings for Event-Based

Robin Shaun 26 Dec 21, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
git《FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding》(CVPR 2021) GitHub: [fig8]

FSCE: Few-Shot Object Detection via Contrastive Proposal Encoding (CVPR 2021) This repo contains the implementation of our state-of-the-art fewshot ob

233 Dec 29, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
The Official PyTorch Implementation of DiscoBox.

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision Paper | Project page | Demo (Youtube) | Demo (Bilib

NVIDIA Research Projects 89 Jan 09, 2023
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Backdoor Attack through Frequency Domain

Backdoor Attack through Frequency Domain DEPENDENCIES python==3.8.3 numpy==1.19.4 tensorflow==2.4.0 opencv==4.5.1 idx2numpy==1.2.3 pytorch==1.7.0 Data

5 Jun 18, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022