A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

Overview

banner-logo


COMPOTE: Calibration Of Multi-focus PlenOpTic camEra.

COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

Quick Start

Pre-requisites

The COMPOTE applications have a light dependency list:

  • boost version 1.54 and up, portable C++ source libraries,
  • libpleno, an open-souce C++ library for plenoptic camera,

and was compiled and tested on:

  • Ubuntu 18.04.4 LTS, GCC 7.5.0, with Eigen 3.3.4, Boost 1.65.1, and OpenCV 3.2.0.

Compilation & Test

If you are comfortable with Linux and CMake and have already installed the prerequisites above, the following commands should compile the applications on your system.

mkdir build && cd build
cmake ..
make -j6

To test the calibrate application you can use the example script from the build directory:

./../example/run_calibration.sh

Applications

Configuration

All applications use .js (json) configuration file. The path to this configuration files are given in the command line using boost program options interface.

Options:

short long default description
-h --help Print help messages
-g --gui true Enable GUI (image viewers, etc.)
-v --verbose true Enable output with extra information
-l --level ALL (15) Select level of output to print (can be combined): NONE=0, ERR=1, WARN=2, INFO=4, DEBUG=8, ALL=15
-i --pimages Path to images configuration file
-c --pcamera Path to camera configuration file
-p --pparams "internals.js" Path to camera internal parameters configuration file
-s --pscene Path to scene configuration file
-f --features "observations.bin.gz" Path to observations file
-e --extrinsics "extrinsics.js" Path to save extrinsics parameters file
-o --output "intrinsics.js" Path to save intrinsics parameters file

For instance to run calibration:

./calibrate -i images.js -c camera.js -p params.js -f observations.bin.gz -s scene.js -g true -l 7

Configuration file examples are given for the dataset R12-A in the folder examples/.

Pre-calibration

precalibrate uses whites raw images taken at different aperture to calibrate the Micro-Images Array (MIA) and computes the internal parameters used to initialize the camera and to detect the Blur Aware Plenoptic (BAP) features.

Requirements: minimal camera configuration, white images. Output: radii statistics (.csv), internal parameters, initial camera parameters.

Features Detection

detect extracts the newly introduced Blur Aware Plenoptic (BAP) features in checkerboard images.

Requirements: calibrated MIA, internal parameters, checkerboard images, and scene configuration. Output: micro-image centers and BAP features.

Camera Calibration

calibrate runs the calibration of the plenoptic camera (set I=0 to act as pinholes array, or I>0 for multifocus case). It generates the intrinsics and extrinsics parameters.

Requirements: calibrated MIA, internal parameters, features and scene configuration. If none are given all steps are re-done. Output: error statistics, calibrated camera parameters, camera poses.

Extrinsics Estimation & Calibration Evaluation

extrinsics runs the optimization of extrinsics parameters given a calibrated camera and generates the poses.

Requirements: internal parameters, features, calibrated camera and scene configuration. Output: error statistics, estimated poses.

COMPOTE also provides two applications to run stats evaluation on the optimized poses optained with a constant step linear translation along the z-axis:

  • linear_evaluation gives the absolute errors (mean + std) and the relative errors (mean + std) of translation of the optimized poses,
  • linear_raytrix_evaluation takes .xyz pointcloud obtained by Raytrix calibration software and gives the absolute errors (mean + std) and the relative errors (mean + std) of translation.

Note: those apps are legacy and have been moved and generalized in the [BLADE] app's evaluate.

Blur Proportionality Coefficient Calibration

blurcalib runs the calibration of the blur proportionality coefficient kappa linking the spread parameter of the PSF with the blur radius. It updates the internal parameters with the optimized value of kappa.

Requirements: internal parameters, features and images. Output: internal parameters.

Datasets

Datasets R12-A, R12-B and R12-C can be downloaded from here. The dataset R12-D, and the simulated unfocused plenoptic camera dataset UPC-S are also available from here.

Citing

If you use COMPOTE or libpleno in an academic context, please cite the following publication:

@inproceedings{labussiere2020blur,
  title 	=	{Blur Aware Calibration of Multi-Focus Plenoptic Camera},
  author	=	{Labussi{\`e}re, Mathieu and Teuli{\`e}re, C{\'e}line and Bernardin, Fr{\'e}d{\'e}ric and Ait-Aider, Omar},
  booktitle	=	{Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages		=	{2545--2554},
  year		=	{2020}
}

License

COMPOTE is licensed under the GNU General Public License v3.0. Enjoy!


Owner
ComSEE - Computers that SEE
Computer Vision research team of the Image, Systems of Perception and Robotics (ISPR) department of the Institut Pascal.
ComSEE - Computers that SEE
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
Personal project about genus-0 meshes, spherical harmonics and a cow

How to transform a cow into spherical harmonics ? Spot the cow, from Keenan Crane's blog Context In the field of Deep Learning, training on images or

3 Aug 22, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
clustimage is a python package for unsupervised clustering of images.

clustimage The aim of clustimage is to detect natural groups or clusters of images. Image recognition is a computer vision task for identifying and ve

Erdogan Taskesen 52 Jan 02, 2023
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023