Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

Overview

Anomaly-Detection-Based-on-Hierarchical-Clustering-of-Mobile-Robot-Data

1. Introduction

This report is present an approach to detect anomaly of mobile robot's current and vibration data. The main idea is examine all data, separate them into two cluster as normal and anomaly and then using these clustering results figure out the merged anomaly score for each data sample. For this purpose, both of current and vibration data are cluster by using Hierarchical clustering algorithm. Before the clustering there are several preprocessing step that are windowing, feature extraction, dynamic time warping and min-max normalization.

You can access our paper here.

2. Interested Data

There are two different types of data that are coming from mobile robots sensors as current and vibration data. Both of them are produce at same frequency but they have different characteristic. Although the current data is numeric data, the vibration data is time series data. So, current data has a single value per each data packet but vibration data has much more value per each data packet.

Current Data Sample Vibration Data Sample

3. Proposed Method

There are two different method are proposed to detect anomaly on data. They have common step as windowing. And also they have some other different steps like feature extraction, normalization and dynamic time warping. These all are about preprocessing steps. After the preprocessing steps data is clustering into two subset by using hierarchical clustering as normal and anomaly. The anomaly scores of each data sample are produces as a result of clustering. And then, the results of two method are collect and anomaly scores are merge for each same data sample. While merging anomaly score, the mean of them are take. Given two method is perform separately using both current and vibration data. Proposed method is shown as below.

Rest of here, method 1 is represent a method which is use feature extraction and method 2 is also represent a method which is use DTW. Remember that both of these methods have also common steps.

3.1 Preprocessing Steps

A. Windowing
In this process, the data are parsed into subsets named as window with same size. For the extract of features of data, the data must be a time series data. In this way, the data are converted time series data. In this project, window size is 3. This step is implement for both two methods. Sample windowing process output is shown as below:

B. Feature Extraction
The features are extracted separately for each window. There are nine different feature as given below:

C. Dynamic Time Warping
In method 2, DTW is used for calculate similarity instead of Euclidean distance. After the windowing process, the data was converted time series data. So now, it is possible to use DTW on data.

Feature Extraction Dynamic Time Warping

D. Min-Max Normalization
Min-max normalization is one of the most common ways to normalize data. For every feature, the minimum value of that feature gets transformed into a 0, the maximum value gets transformed into a 1, and every other value gets transformed into a decimal between 0 and 1. Min-max normalization is executed on features that extracted from window. This step is implement only for method 1.

3.2 Hierarchical Clustering

This clustering technique is divided into two types as agglomerative and divisive. In this method, agglomerative approach is used. At this step, preprocessing steps is already done for method 1 and method 2 and the windows are ready to clustering. These windows are put into hierarchical algorithm to find clusters. As a result, the clusters which windows are belong to are found. They are used for calculate the anomaly score for whole data. This step is implemented for both two methods. And, the dendrogram which is represent the clustering result is produce.

3.3 Find Anomaly Score

The anomaly score is calculated separately from result of hierarchical clustering of both method 1 and method 2. The hierarchical clustering algorithm is produce clusters for each window. With use these clusters, the anomaly score is calculated for each cluster as given below (C: interested cluster, #All window: number of all window, #C window: number of window that belong to cluster C): C_anomaly=(#All Window - #C Window)/(#All Window)
< After the calculation of anomaly score for each method, the merged anomaly score is generate from mean of them. The formula is as follows for generate merged score: C_(merged anomaly score)=(C_(anomaly of method1)+ C_(anomaly of method2))/2
The anomaly score which is higher mean it is highly possible to be anomaly.

4. Experiments

An anomaly score is located right-top of figure. Different clusters are shown with different color.

Current Data Results

Feature Extracted Clustering Anomaly Score DTW Clustering Anoamly Score
Merged Anomaly Score

Vibration Data Results

Feature Extracted Clustering Anomaly Score DTW Clustering Anoamly Score
Merged Anomaly Score

Owner
Zekeriyya Demirci
Research Assistant at Eskişehir Osmangazi University , Contributor of VALU3S
Zekeriyya Demirci
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss

UnFlow: Unsupervised Learning of Optical Flow with a Bidirectional Census Loss This repository contains the TensorFlow implementation of the paper UnF

Simon Meister 270 Nov 06, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Share a benchmark that can easily apply reinforcement learning in Job-shop-scheduling

Gymjsp Gymjsp is an open source Python library, which uses the OpenAI Gym interface for easily instantiating and interacting with RL environments, and

134 Dec 08, 2022
MixText: Linguistically-Informed Interpolation of Hidden Space for Semi-Supervised Text Classification

MixText This repo contains codes for the following paper: Jiaao Chen, Zichao Yang, Diyi Yang: MixText: Linguistically-Informed Interpolation of Hidden

GT-SALT 309 Dec 12, 2022
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
Official pytorch code for "APP: Anytime Progressive Pruning"

APP: Anytime Progressive Pruning Diganta Misra1,2,3, Bharat Runwal2,4, Tianlong Chen5, Zhangyang Wang5, Irina Rish1,3 1 Mila - Quebec AI Institute,2 L

Landskape AI 12 Nov 22, 2022
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Convert Mission Planner (ArduCopter) Waypoint Missions to Litchi CSV Format to execute on DJI Drones

Mission Planner to Litchi Convert Mission Planner (ArduCopter) Waypoint Surveys to Litchi CSV Format to execute on DJI Drones Litchi doesn't support S

Yaros 24 Dec 09, 2022
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
TensorFlow implementation of the algorithm in the paper "Decoupled Low-light Image Enhancement"

Decoupled Low-light Image Enhancement Shijie Hao1,2*, Xu Han1,2, Yanrong Guo1,2 & Meng Wang1,2 1Key Laboratory of Knowledge Engineering with Big Data

17 Apr 25, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022