Personal project about genus-0 meshes, spherical harmonics and a cow

Related tags

Deep Learningmesh2sh
Overview

How to transform a cow into spherical harmonics ?

Spot the cow, from Keenan Crane's blog

Spot

Context

In the field of Deep Learning, training on images or text has made enormous progress in recent years (with a lot of data available + CNN/Transformers). The results are not yet as good for other types of signals, such as videos or 3D models. For 3D models, some recent models use a graph-based approach to deal with 3D meshes, such as Polygen. However, these networks remain difficult to train. There are plenty of alternative representations that have been used to train a Deep network on 3D models: voxels, multiview, point clouds, each having their advantages and disadvantages. In this project, I wanted to try a new one. In topology, a 3D model is nothing more than a 2D surface (possibly colored) embedded into a 3D space. If the surface is closed, we can define an interior and an exterior, but that's it. It is not like a scalar field, which is defined throughout space. Since the data is 2D, it would be useful to be able to project this 3D representation in a 2D Euclidean space, on a uniform grid, like an image, to be able to use a 2D CNN to predict our 3D models.

Deep Learning models have proven effective in learning from mel-spectrograms of audio signals, combined with convolutions. How to exploit this idea for 3D models? All periodic signals can be approximated by Fourier series. We can therefore use a Fourier series to represent any periodic function in the complex plane. In geometry, the "drawing" of this function is a closed line, so it has the topology of a circle, in 2D space. I tried to generalize this idea by using meshes with a spherical topology, which I reprojected on the sphere using a conformal (angle preserving) parametrization, then for which I calculated the harmonics thanks to a single base, that of spherical harmonics.

The origin of this project is inspired by this video by 3blue1brown.

Spherical harmonics of a 3D mesh

We only use meshes that have the topology of a sphere, i.e. they must be manifold and genus 0. The main idea is to get a spherical parametrization of the mesh, to define where are the attributes of the mesh on the sphere. Then, the spherical harmonic coefficients that best fit these attributes are calculated.

The attributes that interest us to describe the structure of the mesh are:

  • Its geometric properties. We could directly give the XYZ coordinates, but thanks to the parametrization algorithm that is used, only the density of curvature is necessary. Consequently, we also need to know the area distortion, since our parametrization is not authalic (area preserving).
  • Its colors, in RGB format. For simplicity, here I use colors by vertices, and not with a UV texture, so it loses detail.
  • The vertex density of the mesh, which allows to put more vertices in areas that originally had a lot. This density is obtained using Von Mises-Fisher kernel density estimator.

Calculates the spherical parametrization of the mesh, then displays its various attributes

First step

The spherical harmonic coefficients can be represented as images, with the coefficients corresponding to m=0 on the diagonal. The low frequencies are at the top left.

Spherical harmonics coefficients amplitude as an image for each attribute

Spherical harmonic images

Reconstruction

We can reconstruct the model from the 6 sets of coefficients, which act as 6 functions on the sphere. We first make a spherical mesh inspired by what they made in "A Curvature and Density based Generative Representation of Shapes". Some points are sampled according to the vertex density function. We then construct an isotropic mesh with respect to a given density, using Centroidal Voronoi Tesselation. The colors are interpolated at each vertex.

Then the shape is obtained by reversing our spherical parametrization. The spherical parametrization uses a mean curvature flow, which is a simple spherical parametrizations. We use the conformal variant from Can Mean-Curvature Flow Be Made Non-Singular?.

Mean curvature flow equations. See Roberta Alessandroni's Introduction to mean curvature flow for more details on the notations MCF

Reconstruction of the mesh using only spherical harmonics coefficients First step

Remarks

This project is a proof of concept. It allows to represent a model which has the topology of a sphere in spherical harmonics form. The results could be more precise, first with an authalic (area-preserving) parametrization rather than a conformal (angle-preserving) one. Also, I did not try to train a neural network using this representation, because that requires too much investment. It takes some pre-processing on common 3D datasets to keep only the watertight genus-0 meshes, and then you have to do the training, which takes time. If anyone wants to try, I'd be happy to help.

I did it out of curiosity, and to gain experience, not to have an effective result. All algorithms used were coded in python/pytorch except for some solvers from SciPy and spherical harmonics functions from shtools. It makes it easier to read, but it could be faster using other libraries.

Demo

Check the demo in Google Colab : Open In Colab

To use the functions of this project you need the dependencies below. The versions indicated are those that I have used, and are only indicative.

  • python (3.9.10)
  • pytorch (1.9.1)
  • scipy (1.7.3)
  • scikit-sparse (0.4.6)
  • pyshtools (4.9.1)

To run the demo main.ipynb, you also need :

  • jupyterlab (3.2.9)
  • trimesh (3.10.0)
  • pyvista (0.33.2)
  • pythreejs (optional, 2.3.0)

You can run these lines to install everything on Linux using conda :

conda create --name mesh2sh
conda activate mesh2sh
conda install python=3.9
conda install scipy=1.7 -c anaconda
conda install pytorch=1.9 cudatoolkit=11 -c pytorch -c conda-forge
conda install gmt intel-openmp -c conda-forge
conda install pyshtools pyvista jupyterlab -c conda-forge
conda update pyshtools -c conda-forge
pip install scikit-sparse
pip install pythreejs
pip install trimesh

Then just run the demo :

jupyter notebook main.ipynb

Contribution

To run tests, you need pytest and flake8 :

pip install pytest
pip install flake8

You can check coding style using flake8 --max-line-length=120, and run tests using python -m pytest tests/ from the root folder. Also, run the demo again to check that the results are consistent

References

Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy" (ICLR 2022 Spotlight)

About Code release for Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy (ICLR 2022 Spotlight)

THUML @ Tsinghua University 221 Dec 31, 2022
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
Deep motion transfer

animation-with-keypoint-mask Paper The right most square is the final result. Softmax mask (circles): \ Heatmap mask: \ conda env create -f environmen

9 Nov 01, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique

AOS: Airborne Optical Sectioning Airborne Optical Sectioning (AOS) is a wide synthetic-aperture imaging technique that employs manned or unmanned airc

JKU Linz, Institute of Computer Graphics 39 Dec 09, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022