PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes

Overview

PolytopeSampler

PolytopeSampler is a Matlab implementation of constrained Riemannian Hamiltonian Monte Carlo for sampling from high dimensional disributions on polytopes. It is able to sample efficiently from sets and distributions with more than 100K dimensions.

Quick Tutorial

PolytopeSampler samples from distributions of the form exp(-f(x)), for a convex function f, subject to constraints Aineq * x <= bineq, Aeq * x = beq and lb <= x <= ub.

The function f can be specified by arrays containing its first and second derivative or function handles. Only the first derivative is required. By default, f is empty, which represents a uniform distribution. If the first derivative is a function handle, then the function and its second derivatives must also be provided.

To sample N points from a polytope P, you can call sample(P, N). The function sample will

  1. Find an initial feasible point
  2. Run constrained Hamiltonian Monte Carlo
  3. Test convergence of the sampling algorithm by computing Effective Sample Size (ESS) and terminate when ESS >= N. If the target distribution is uniform, a uniformity test will also be performed.

Extra parameters can be set up using opts. Some useful parameters include maxTime and maxStep. By default, they are set to

                        maxTime: 86400 (max sampling time in seconds)
                        maxStep: 300000 (maximum number of steps)

The output is a struct o, which stores samples generated in o.samples and a summary of the sample in o.summary. o.samples is an array of size dim x #steps.

Example

We demonstrate PolytopeSampler using a simple example, sampling uniformly from a simplex. The polytope is defined by

>> P = struct;
>> d = 10;
>> P.Aeq = ones(1, d);
>> P.beq = 1;
>> P.lb = zeros(d, 1);

The polytope has dimension d = 10 with constraint sum_i x_i = 1 and x >= 0. This is a simplex. To generate 200 samples uniformly from the polytope P, we call the function sample().

>> o = sample(P, 200);
  Time spent |  Time reamin |                  Progress | Samples |  AccProb | StepSize |  MixTime
00d:00:00:01 | 00d:00:00:00 | ######################### | 211/200 | 0.989903 | 0.200000 |     11.2
Done!

We can access the samples generated using

>> o.samples

We can print a summary of the samples:

>> o.summary

ans =

  10×7 table

                     mean        std         25%         50%         75%      n_ess      r_hat 
                   ________    ________    ________    ________    _______    ______    _______

    samples[1]     0.093187    0.091207    0.026222    0.064326    0.13375    221.51    0.99954
    samples[2]     0.092815    0.086905    0.027018    0.066017    0.13221    234.59     1.0301
    samples[3]      0.10034    0.090834    0.030968    0.075631    0.13788    216.56     1.0159
    samples[4]      0.10531    0.092285    0.035363    0.077519     0.1481    235.25     1.0062
    samples[5]      0.10437    0.087634    0.034946    0.080095     0.1533    212.54    0.99841
    samples[6]       0.1029    0.093724    0.028774    0.074354    0.15135     227.6     1.0052
    samples[7]       0.1042    0.083084    0.038431    0.081964    0.15352    231.54     1.0008
    samples[8]     0.088778    0.086902    0.025565    0.062473    0.11837    229.69     1.0469
    samples[9]      0.10627     0.09074    0.036962    0.084294    0.15125    211.64    0.99856
    samples[10]     0.10184    0.084699    0.035981    0.074923    0.14578    230.63     1.0277

n_ess shows the effective sample size of the samples generated. r_hat tests the convergence of the sampling algorithm. A value of r_hat close to 1 indicates that the algorithm has converged properly.

See demo.m for more examples, including examples of sampling from non-uniform distributions.

Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
An adaptable Snakemake workflow which uses GATKs best practice recommendations to perform germline mutation calling starting with BAM files

Germline Mutation Calling This Snakemake workflow follows the GATK best-practice recommandations to call small germline variants. The pipeline require

12 Dec 24, 2022
A Python library created to assist programmers with complex mathematical functions

libmaths was created not only as a learning experience for me, but as a way to make mathematical models in seconds for Python users using mat

Simple 73 Oct 02, 2022
在原神中使用围栏绘图

yuanshen_draw 在原神中使用围栏绘图 文件说明 toLines.py 将一张图片转换为对应的线条集合,视频可以按帧转换。 draw.py 在原神家园里绘制一张线条图。 draw_video.py 在原神家园里绘制视频(自动按帧摆放,截图(win)并回收) cat_to_video.py

14 Oct 08, 2022
The repository is my code for various types of data visualization cases based on the Matplotlib library.

ScienceGallery The repository is my code for various types of data visualization cases based on the Matplotlib library. It summarizes the code and cas

Warrick Xu 2 Apr 20, 2022
A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates

Jalali Pandas Extentsion A pandas extension that solves all problems of Jalai/Iraninan/Shamsi dates Features Series Extenstion Convert string to Jalal

51 Jan 02, 2023
Visualization of hidden layer activations of small multilayer perceptrons (MLPs)

MLP Hidden Layer Activation Visualization To gain some intuition about the internal representation of simple multi-layer perceptrons (MLPs) I trained

Andreas Köpf 7 Dec 30, 2022
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Minimalistic tool to visualize how the routes to a given target domain change over time, feat. Python 3.10 & mermaid.js

Péter Ferenc Gyarmati 1 Jan 17, 2022
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
A command line tool for visualizing CSV/spreadsheet-like data

PerfPlotter Read data from CSV files using pandas and generate interactive plots using bokeh, which can then be embedded into HTML pages and served by

Gino Mempin 0 Jun 25, 2022
Create Badges with stats of Scratch User, Project and Studio. Use those badges in Github readmes, etc.

Scratch-Stats-Badge Create customized Badges with stats of Scratch User, Studio or Project. Use those badges in Github readmes, etc. Examples Document

Siddhesh Chavan 5 Aug 28, 2022
Personal IMDB Graphs with Bokeh

Personal IMDB Graphs with Bokeh Do you like watching movies and also rate all of them in IMDB? Would you like to look at your IMDB stats based on your

2 Dec 15, 2021
RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

RockNext is an Open Source extending ERPNext built on top of Frappe bringing enterprise ready utilization.

Matheus Breguêz 13 Oct 12, 2022
paintable GitHub contribute table

githeart paintable github contribute table how to use: Functions key color select 1,2,3,4,5 clear c drawing mode mode on turn off e print paint matrix

Bahadır Araz 27 Nov 24, 2022
LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

LabGraph is a a Python-first framework used to build sophisticated research systems with real-time streaming, graph API, and parallelism.

MLH Fellowship 7 Oct 05, 2022
Here I plotted data for the average test scores across schools and class sizes across school districts.

HW_02 Here I plotted data for the average test scores across schools and class sizes across school districts. Average Test Score by Race This graph re

7 Oct 27, 2021
Data parsing and validation using Python type hints

pydantic Data validation and settings management using Python type hinting. Fast and extensible, pydantic plays nicely with your linters/IDE/brain. De

Samuel Colvin 12.1k Jan 06, 2023
Automatic data visualization in atom with the nteract data-explorer

Data Explorer Interactively explore your data directly in atom with hydrogen! The nteract data-explorer provides automatic data visualization, so you

Ben Russert 65 Dec 01, 2022
The interactive graphing library for Python (includes Plotly Express) :sparkles:

plotly.py Latest Release User forum PyPI Downloads License Data Science Workspaces Our recommended IDE for Plotly’s Python graphing library is Dash En

Plotly 12.7k Jan 05, 2023