Seismic Waveform Inversion Toolbox-1.0

Overview

Seismic Waveform Inversion Toolbox (SWIT-1.0)

By Haipeng Li @ USTC

Contact: [email protected]

First look at SWIT

Contents of SWIT

Workflow of SWIT

SWIT Installation

Step 1: Install gfortran

# Install gcc and gfortran
sudo apt-get install build-essential
sudo apt install gfortran

Step 2 : Install OpenMPI

# Download the latest OpenMPI package, or go to  http://www.open-mpi.org/software/ompi to download the desired version
wget https://download.open-mpi.org/release/open-mpi/v4.1/openmpi-4.1.1.tar.gz 
tar xvfz openmpi-4.1.1.tar.gz
cd openmpi-4.1.1

# Configure the installation files and install OpenMPI (this would take quite a while)
./configure --prefix=/usr/local/openmpi CC=gcc FC=gfortran
make    # make -j8  # use 8 cores to speed up the make process
sudo make install

# Add env path at your ~/.bashrc
vim ~/.bashrc
export PATH=/usr/local/openmpi/bin:$PATH
source ~/.bashrc

# Check OpenMPI is successfully installed
which mpirun

Step 3 : Install Anaconda Environment (Otherwise, just install Python dependencies as you like)

# Anaconda is recommended. For installing Anaconda, please refer to https://docs.anaconda.com/anaconda/install/linux/
# 1. download package from: https://www.anaconda.com/products/individual/download-success
# 2. bash your_downloaded_Anaconda_package

# Create the conda environment for SWIT if you use Anaconda
conda create --name SWIT python=3.7.5
conda activate SWIT

# Install dependencies using USTC mirrors (whether use Anaconda or not)
pip install numpy obspy scipy matplotlib multiprocess PySimpleGUI psutil Pillow -i https://pypi.mirrors.ustc.edu.cn/simple/

Step 4 : Install & Run SWIT

# Complie the fd2dmpi forward solver with the default fortran compiler (mpif90).
# If you want to use other fortran compiler, you can edit the Makefile.config file (line 18) under ~/SWIT-1.0/fd2dmpi/.
cd /your/own/path/to/SWIT-1.0/fd2dmpi/
rm *.mod
make clean
make

# Add fd2dmpi and Python toolbox to the env path at your ~/.bashrc 
vim ~/.bashrc 
export PATH=/your/own/path/to/SWIT-1.0/bin:$PATH
export PYTHONPATH=/your/own/path/to/SWIT-1.0/toolbox
source ~/.bashrc

# Option 1. Run SWIT via GUI
cd /your/own/path/to/SWIT-1.0/toolbox/
python runswit_Linux.py    # or python runswit_MacOS.py 

# Option 2. Run SWIT via the Python script
cd /your/own/path/to/SWIT-1.0/example/some_case/
./run_workflow     # You need to modify all the paths in the Python script before running

# Notice:
# If you use the Intel Compiler, you need to make the following change in forward and adjoint functions in toolbox/solver.py: 
# Before:     
#	   solver_cmd = 'mpirun -np %d  fd2dmpi par=%s' % (mpiproc, parfile)
# After:
#    solver_cmd = 'mpiexec -np %d  fd2dmpi par=%s' % (mpiproc, parfile)

Systems

SWIT-1.0 has been tested on Ubuntu 16.04, 18.04, 20.04, Centos 7.
It seems that SWIT-1.0 cannot run on MacOS properly due to the problem with the Python multiprocess module. 
This issue will be fixed in the near future.

FWI examples (keep updating)

No. Acquisition Model Misfit Features Optimization Size
1 Land Marmousi Waveform - NLCG 481x121, 25 m
2 Land Overthrust Waveform - NLCG 401x101, 25 m
3 Marine Marmousi Waveform - NLCG 481x141, 25 m
4 Marine Overthrust Waveform - NLCG 401x121, 25 m
5 Land Marmousi Traveltime & Waveform 1D initial model NLCG 401x121, 25 m
6 Land Overthrust Waveform Multi-scale Inversion NLCG 401x101, 25 m

Citations :

If you find SWIT is useful, please cite the following work:

1. Li, H., Li, J., Liu, B., Huang, X. (2021). Application of full-waveform tomography on deep seismic profiling dataset for tectonic fault characterization. International Meeting for Applied Geoscience & Energy.

2. Schuster, G. T. (2017). Seismic inversion. Society of Exploration Geophysicists. https://library.seg.org/doi/book/10.1190/1.9781560803423

Few more words:

  1. Simplicity is the Greatest Virtue Ever.

  2. The Seismic WIT always lies within.

You might also like...
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

A Python Tools to imaging the shallow seismic structure

ShallowSeismicImaging Tools to imaging the shallow seismic structure, above 10 km, based on the ZH ratio measured from the ambient seismic noise, and

OpenQuake's Engine for Seismic Hazard and Risk Analysis
OpenQuake's Engine for Seismic Hazard and Risk Analysis

OpenQuake Engine The OpenQuake Engine is an open source application that allows users to compute seismic hazard and seismic risk of earthquakes on a g

UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation. Training python train.py --c

efficient neural audio synthesis in the waveform domain
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation
Unofficial PyTorch Implementation of UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation

UnivNet UnivNet: A Neural Vocoder with Multi-Resolution Spectrogram Discriminators for High-Fidelity Waveform Generation This is an unofficial PyTorch

Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

Chunked Autoregressive GAN (CARGAN) Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis [paper] [compan

A python package to manage the stored receiver-side Strain Green's Tensor (SGT) database of 3D background models and able to generate Green's function and synthetic waveform

A python package to manage the stored receiver-side Strain Green's Tensor (SGT) database of 3D background models and able to generate Green's function and synthetic waveform

WAL enables programmable waveform analysis.

This repro introcudes the Waveform Analysis Language (WAL). The initial paper on WAL will appear at ASPDAC'22 and can be downloaded here: https://www.

A collection of resources on GAN Inversion.

This repo is a collection of resources on GAN inversion, as a supplement for our survey

[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

[IJCAI-2021] A benchmark of data-free knowledge distillation from paper
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

A Simplied Framework of GAN Inversion

Framework of GAN Inversion Introcuction You can implement your own inversion idea using our repo. We offer a full range of tuning settings (in hparams

Style-based Neural Drum Synthesis with GAN inversion
Style-based Neural Drum Synthesis with GAN inversion

Style-based Drum Synthesis with GAN Inversion Demo TensorFlow implementation of a style-based version of the adversarial drum synth (ADS) from the pap

Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing
Implementation for HFGI: High-Fidelity GAN Inversion for Image Attribute Editing

HFGI: High-Fidelity GAN Inversion for Image Attribute Editing High-Fidelity GAN Inversion for Image Attribute Editing Update: We released the inferenc

 Chunkmogrify: Real image inversion via Segments
Chunkmogrify: Real image inversion via Segments

Chunkmogrify: Real image inversion via Segments Teaser video with live editing sessions can be found here This code demonstrates the ideas discussed i

Official implementation for
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Comments
  • Problem make installing the package

    Problem make installing the package

    Hi Haipeng,

    I am installing this package on my macbook pro M1. I have openmpi installed:

     mpif90 --version
    GNU Fortran (Homebrew GCC 11.2.0_3) 11.2.0
    Copyright (C) 2021 Free Software Foundation, Inc.
    This is free software; see the source for copying conditions.  There is NO
    warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
    

    However, when I run make in the fd2dmpi folder I got the following error indicating grammar error. Could this be a problem with my mpi library?

    ❯ make
    /opt/homebrew/bin/mpif90 -o .obj/global.o global.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/parser.o parser.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/datatype.o datatype.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/mmi_mpi.o mmi_mpi.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/string.o string.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/su.o su.f90 -O3 -w  -c -funroll-loops -J.mod
    /opt/homebrew/bin/mpif90 -o .obj/io.o io.f90 -O3 -w  -c -funroll-loops -J.mod
    io.f90:296:17:
    
      296 |   call MPI_BCAST(den(:,ix),nz_pml,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
          |                 1
    ......
      798 | call MPI_BCAST(fs,nx_pml,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
          |               2
    Error: Type mismatch between actual argument at (1) and actual argument at (2) (REAL(4)/INTEGER(4)).
    io.f90:261:17:
    

    Best, Xin

    opened by RunningXinLiu 11
  • Questions about free surface

    Questions about free surface

    Thank you for your work.

    PML =50, whether free surface is set to Yes or No and the result seems to be the same. I don't know why.

    In addition, on line 154 of base.py, "self.nz_pml = self.nz + self.pml * (2 - self.fs)". Can you explain what it means and where self.nz_pml is used

    I would appreciate it if you could take some time to answer my questions.

    opened by ZYX68926 1
  • The data filtering becomes very slow due to large OMP_NUM_THREADS for Scipy

    The data filtering becomes very slow due to large OMP_NUM_THREADS for Scipy

    I add a default specification for OMP_NUM_THREADS in base.py (Line 70):

    os.environ["OMP_NUM_THREADS"] = "1" # export OMP_NUM_THREADS=1

    The data filtering speed is faster now.

    opened by Haipeng-ustc 0
Releases(v1.0.0)
Owner
Haipeng Li
I'm a geophysics graduate student.
Haipeng Li
An interactive dashboard for visualisation, integration and classification of data using Active Learning.

AstronomicAL An interactive dashboard for visualisation, integration and classification of data using Active Learning. AstronomicAL is a human-in-the-

45 Nov 28, 2022
China and India Population and GDP Visualization

China and India Population and GDP Visualization Historical Population Comparison between India and China This graph shows the population data of Indi

Nicolas De Mello 10 Oct 27, 2021
Python package to visualize and cluster partial dependence.

partial_dependence A python library for plotting partial dependence patterns of machine learning classifiers. The technique is a black box approach to

NYU Visualization Lab 25 Nov 14, 2022
Movies-chart - A CLI app gets the top 250 movies of all time from imdb.com and the top 100 movies from rottentomatoes.com

movies-chart This CLI app gets the top 250 movies of all time from imdb.com and

3 Feb 17, 2022
Generate a 3D Skyline in STL format and a OpenSCAD file from Gitlab contributions

Your Gitlab's contributions in a 3D Skyline gitlab-skyline is a Python command to generate a skyline figure from Gitlab contributions as Github did at

Félix Gómez 70 Dec 22, 2022
Mathematical learnings with Lean, for those of us who wish we knew more of both!

Lean for the Inept Mathematician This repository contains source files for a number of articles or posts aimed at explaining bite-sized mathematical c

Julian Berman 8 Feb 14, 2022
Geospatial Data Visualization using PyGMT

Example script to visualize topographic data, earthquake data, and tomographic data on a map

Utpal Kumar 2 Jul 30, 2022
Fast scatter density plots for Matplotlib

About Plotting millions of points can be slow. Real slow... 😴 So why not use density maps? ⚡ The mpl-scatter-density mini-package provides functional

Thomas Robitaille 473 Dec 12, 2022
These data visualizations were created for my introductory computer science course using Python

Homework 2: Matplotlib and Data Visualization Overview These data visualizations were created for my introductory computer science course using Python

Sophia Huang 12 Oct 20, 2022
Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner

streamlit-dashboards Streamlit dashboard examples - Twitter cashtags, StockTwits, WSB, Charts, SQL Pattern Scanner Tutorial Video https://ww

122 Dec 21, 2022
Sci palettes for matplotlib/seaborn

sci palettes for matplotlib/seaborn Installation python3 -m pip install sci-palettes Usage import seaborn as sns import matplotlib.pyplot as plt impor

Qingdong Su 2 Jun 07, 2022
Python script for writing text on github contribution chart.

Github Contribution Drawer Python script for writing text on github contribution chart. Requirements Python 3.X Getting Started Create repository Put

Steven 0 May 27, 2022
Sprint planner considering JIRA issues and google calendar meetings schedule.

Sprint planner Sprint planner is a Python script for planning your Jira tasks based on your calendar availability. Installation Use the package manage

Apptension 2 Dec 05, 2021
Insert SVGs into matplotlib

Insert SVGs into matplotlib

Andrew White 35 Dec 29, 2022
The Python ensemble sampling toolkit for affine-invariant MCMC

emcee The Python ensemble sampling toolkit for affine-invariant MCMC emcee is a stable, well tested Python implementation of the affine-invariant ense

Dan Foreman-Mackey 1.3k Jan 04, 2023
HiPlot makes understanding high dimensional data easy

HiPlot - High dimensional Interactive Plotting HiPlot is a lightweight interactive visualization tool to help AI researchers discover correlations and

Facebook Research 2.4k Jan 04, 2023
VDLdraw - Batch plot the log files exported from VisualDL using Matplotlib

VDLdraw Batch plot the log files exported from VisualDL using Matplotlib. At pre

Yizhou Chen 5 Sep 26, 2022
Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal)

Mandelbrot-set-Realtime-Viewer- Realtime Viewer Mandelbrot set with Python and Taichi (cpu, opengl, cuda, vulkan, metal) Control: "WASD" - movement, "

22 Oct 31, 2022
Python implementation of the Density Line Chart by Moritz & Fisher.

PyDLC - Density Line Charts with Python Python implementation of the Density Line Chart (Moritz & Fisher, 2018) to visualize large collections of time

Charles L. Bérubé 10 Jan 06, 2023
Fastest Gephi's ForceAtlas2 graph layout algorithm implemented for Python and NetworkX

ForceAtlas2 for Python A port of Gephi's Force Atlas 2 layout algorithm to Python 2 and Python 3 (with a wrapper for NetworkX and igraph). This is the

Bhargav Chippada 227 Jan 05, 2023