Factorization machines in python

Related tags

Machine LearningpyFM
Overview

Factorization Machines in Python

This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive regularization as a learning method, which adapts the regularization automatically while training the model parameters. See [2] for details. From libfm.org: "Factorization machines (FM) are a generic approach that allows to mimic most factorization models by feature engineering. This way, factorization machines combine the generality of feature engineering with the superiority of factorization models in estimating interactions between categorical variables of large domain."

[1] Steffen Rendle (2012): Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May. [2] Steffen Rendle: Learning recommender systems with adaptive regularization. WSDM 2012: 133-142

Installation

pip install git+https://github.com/coreylynch/pyFM

Dependencies

  • numpy
  • sklearn

Training Representation

The easiest way to use this class is to represent your training data as lists of standard Python dict objects, where the dict elements map each instance's categorical and real valued variables to its values. Then use a sklearn DictVectorizer to convert them to a design matrix with a one-of-K or “one-hot” coding.

Here's a toy example

from pyfm import pylibfm
from sklearn.feature_extraction import DictVectorizer
import numpy as np
train = [
	{"user": "1", "item": "5", "age": 19},
	{"user": "2", "item": "43", "age": 33},
	{"user": "3", "item": "20", "age": 55},
	{"user": "4", "item": "10", "age": 20},
]
v = DictVectorizer()
X = v.fit_transform(train)
print(X.toarray())
[[ 19.   0.   0.   0.   1.   1.   0.   0.   0.]
 [ 33.   0.   0.   1.   0.   0.   1.   0.   0.]
 [ 55.   0.   1.   0.   0.   0.   0.   1.   0.]
 [ 20.   1.   0.   0.   0.   0.   0.   0.   1.]]
y = np.repeat(1.0,X.shape[0])
fm = pylibfm.FM()
fm.fit(X,y)
fm.predict(v.transform({"user": "1", "item": "10", "age": 24}))

Getting Started

Here's an example on some real movie ratings data.

First get the smallest movielens ratings dataset from http://www.grouplens.org/system/files/ml-100k.zip. ml-100k contains the files u.item (list of movie ids and titles) and u.data (list of user_id, movie_id, rating, timestamp).

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from pyfm import pylibfm

# Read in data
def loadData(filename,path="ml-100k/"):
    data = []
    y = []
    users=set()
    items=set()
    with open(path+filename) as f:
        for line in f:
            (user,movieid,rating,ts)=line.split('\t')
            data.append({ "user_id": str(user), "movie_id": str(movieid)})
            y.append(float(rating))
            users.add(user)
            items.add(movieid)

    return (data, np.array(y), users, items)

(train_data, y_train, train_users, train_items) = loadData("ua.base")
(test_data, y_test, test_users, test_items) = loadData("ua.test")
v = DictVectorizer()
X_train = v.fit_transform(train_data)
X_test = v.transform(test_data)

# Build and train a Factorization Machine
fm = pylibfm.FM(num_factors=10, num_iter=100, verbose=True, task="regression", initial_learning_rate=0.001, learning_rate_schedule="optimal")

fm.fit(X_train,y_train)
Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training MSE: 0.59477
-- Epoch 2
Training MSE: 0.51841
-- Epoch 3
Training MSE: 0.49125
-- Epoch 4
Training MSE: 0.47589
-- Epoch 5
Training MSE: 0.46571
-- Epoch 6
Training MSE: 0.45852
-- Epoch 7
Training MSE: 0.45322
-- Epoch 8
Training MSE: 0.44908
-- Epoch 9
Training MSE: 0.44557
-- Epoch 10
Training MSE: 0.44278
...
-- Epoch 98
Training MSE: 0.41863
-- Epoch 99
Training MSE: 0.41865
-- Epoch 100
Training MSE: 0.41874

# Evaluate
preds = fm.predict(X_test)
from sklearn.metrics import mean_squared_error
print("FM MSE: %.4f" % mean_squared_error(y_test,preds))
FM MSE: 0.9227

Classification example

import numpy as np
from sklearn.feature_extraction import DictVectorizer
from sklearn.cross_validation import train_test_split
from pyfm import pylibfm

from sklearn.datasets import make_classification

X, y = make_classification(n_samples=1000,n_features=100, n_clusters_per_class=1)
data = [ {v: k for k, v in dict(zip(i, range(len(i)))).items()}  for i in X]

X_train, X_test, y_train, y_test = train_test_split(data, y, test_size=0.1, random_state=42)

v = DictVectorizer()
X_train = v.fit_transform(X_train)
X_test = v.transform(X_test)

fm = pylibfm.FM(num_factors=50, num_iter=10, verbose=True, task="classification", initial_learning_rate=0.0001, learning_rate_schedule="optimal")

fm.fit(X_train,y_train)

Creating validation dataset of 0.01 of training for adaptive regularization
-- Epoch 1
Training log loss: 1.91885
-- Epoch 2
Training log loss: 1.62022
-- Epoch 3
Training log loss: 1.36736
-- Epoch 4
Training log loss: 1.15562
-- Epoch 5
Training log loss: 0.97961
-- Epoch 6
Training log loss: 0.83356
-- Epoch 7
Training log loss: 0.71208
-- Epoch 8
Training log loss: 0.61108
-- Epoch 9
Training log loss: 0.52705
-- Epoch 10
Training log loss: 0.45685

# Evaluate
from sklearn.metrics import log_loss
print "Validation log loss: %.4f" % log_loss(y_test,fm.predict(X_test))
Validation log loss: 1.5025
Owner
Corey Lynch
Research Engineer, Robotics @ Google Brain
Corey Lynch
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
Diabetes Prediction with Logistic Regression

Diabetes Prediction with Logistic Regression Exploratory Data Analysis Data Preprocessing Model & Prediction Model Evaluation Model Validation: Holdou

AZİZE SULTAN PALALI 2 Oct 23, 2021
Decision Weights in Prospect Theory

Decision Weights in Prospect Theory It's clear that humans are irrational, but how irrational are they? After some research into behavourial economics

Cameron Davidson-Pilon 32 Nov 08, 2021
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
MLBox is a powerful Automated Machine Learning python library.

MLBox is a powerful Automated Machine Learning python library. It provides the following features: Fast reading and distributed data preprocessing/cle

Axel 1.4k Jan 06, 2023
Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Using Logistic Regression and classifiers of the dataset to produce an accurate recall, f-1 and precision score

Thines Kumar 1 Jan 31, 2022
Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máquina.

Estatistica para Ciência de Dados e Machine Learning Arquivos do curso online sobre a estatística voltada para ciência de dados e aprendizado de máqui

Renan Barbosa 1 Jan 10, 2022
SPCL 48 Dec 12, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms.

Sklearn-genetic-opt scikit-learn models hyperparameters tuning and feature selection, using evolutionary algorithms. This is meant to be an alternativ

Rodrigo Arenas 180 Dec 20, 2022
Open-Source CI/CD platform for ML teams. Deliver ML products, better & faster. ⚡️🧑‍🔧

Deliver ML products, better & faster Giskard is an Open-Source CI/CD platform for ML teams. Inspect ML models visually from your Python notebook 📗 Re

Giskard 335 Jan 04, 2023
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly.

scikit-fem is a lightweight Python 3.7+ library for performing finite element assembly. Its main purpose is the transformation of bilinear forms into sparse matrices and linear forms into vectors.

Tom Gustafsson 297 Dec 13, 2022
Predict the demand for electricity (R) - FRENCH

06.demand-electricity Predict the demand for electricity (R) - FRENCH Prédisez la demande en électricité Prérequis Pour effectuer ce projet, vous devr

1 Feb 13, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Jan 05, 2023
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
Data from "Datamodels: Predicting Predictions with Training Data"

Data from "Datamodels: Predicting Predictions with Training Data" Here we provid

Madry Lab 51 Dec 09, 2022