《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Overview

Single-Image-Reflection-Removal-Beyond-Linearity

Paper

Single Image Reflection Removal Beyond Linearity.

Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, Guoqiang Han, and Shengfeng He*

Requirement

  • Python 3.5
  • PIL
  • OpenCV-Python
  • Numpy
  • Pytorch 0.4.0
  • Ubuntu 16.04 LTS

Reflection Synthesis

cd ./Synthesis
  • Constrcut these new folders for training and testing

    training set: trainA, trainB, trainC(contains real-world reflection images for adversarial loss.)

    testing set: testA(contains the images to be used as reflection.), testB(contains the images to be used as transmission.)

  • To train the synthesis model:

python3 ./train.py --dataroot path_to_dir_for_reflection_synthesis/ --gpu_ids 0 --save_epoch_freq 1 --batchSize 10

or you can directly:

bash ./synthesis_train.sh
  • To test the synthesis model:
python3 ./test.py --dataroot path_to_dir_for_synthesis/ --gpu_ids 0 --which_epoch 130 --how_many 1

or you can directly:

bash ./synthesis_test.sh

Here is the pre-trained model. And to generate the three types of reflection images, you can use these original images which are from perceptual-reflection-removal.

Due to the copyright, the real reflection images are not released here.

Reflection Removal

cd ./Removal
  • Constrcut these new folders for training and testing

    training set: trainA(contains the reflection ground truth.), trainB(contains the transmission ground truth), trainC(contains the images which have the reflection to remove.), trainW(contains the alpha blending mask ground truth.)

    testing set: testB(contains the transmission ground truth), testC(contains the images which have the reflection to remove.)

  • To train the removal model:

python3 ./train.py --dataroot path_to_dir_for_reflection_removal/ --gpu_ids 0 --save_epoch_freq 1 --batchSize 5 --which_type focused

or you can directly:

bash ./removal_train.sh
  • To test the removal model:
python3 ./test.py --dataroot path_to_dir_for_reflection_removal/ --which_type focused --which_epoch 130 --how_many 1

or you can directly:

bash ./removal_test.sh

Here are the pre-trained models which are trained on the three types of synthetic dataset.

Here are the synthetic training set and testing set for reflection removal.

To evaluate on other datasets, please finetune the pre-trained models or re-train a new model on the specific training set.

Acknowledgments

Part of the code is based upon pytorch-CycleGAN-and-pix2pix.

Citation

@InProceedings{Wen_2019_CVPR,
  author = {Wen, Qiang and Tan, Yinjie and Qin, Jing and Liu, Wenxi and Han, Guoqiang and He, Shengfeng},
  title = {Single Image Reflection Removal Beyond Linearity},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2019}
}
Owner
Qiang Wen
Qiang Wen
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Official PyTorch Implementation of Rank & Sort Loss [ICCV2021]

Rank & Sort Loss for Object Detection and Instance Segmentation The official implementation of Rank & Sort Loss. Our implementation is based on mmdete

Kemal Oksuz 229 Dec 20, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
This code provides a PyTorch implementation for OTTER (Optimal Transport distillation for Efficient zero-shot Recognition), as described in the paper.

Data Efficient Language-Supervised Zero-Shot Recognition with Optimal Transport Distillation This repository contains PyTorch evaluation code, trainin

Meta Research 45 Dec 20, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

QiulinW 122 Dec 23, 2022
Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

Gabriel Huang 70 Jan 07, 2023
Garbage Detection system which will detect objects based on whether it is plastic waste or plastics or just garbage.

Garbage Detection using Yolov5 on Jetson Nano 2gb Developer Kit. Garbage detection system which will detect objects based on whether it is plastic was

Rishikesh A. Bondade 2 May 13, 2022
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Punctuation Restoration using Transformer Models This repository contins official implementation of the paper Punctuation Restoration using Transforme

Tanvirul Alam 142 Jan 01, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

📈 Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022