CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

Related tags

Deep LearningDSL
Overview

Python >=3.8 PyTorch >=1.8.0 mmcv-full >=1.3.10

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection

DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detection (SSOD).

This code is established on mmdetection and is only used for research.

Instruction

Install dependencies

pytorch>=1.8.0
cuda 10.2
python>=3.8
mmcv-full 1.3.10

Download ImageNet pre-trained models

Download resnet50_rla_2283.pth (Google) resnet50_rla_2283.pth (Baidu, extract code: 5lf1) for later DSL training.

Training

For dynamically labeling the unlabeled images, original COCO dataset and VOC dataset will be converted to (DSL-style) datasets where annotations are saved in different json files and each image has its own annotation file. In addition, this implementation is slightly different from the original paper, where we clean the code, merge some data flow for speeding up training, add PatchShuffle also to the labeled images, and remove MetaNet for speeding up training as well, the final performance is similar as the original paper.

Clone this project & Create data root dir

cd ${project_root_dir}
git clone https://github.com/chenbinghui1/DSL.git
mkdir data
mkdir ori_data

#resulting format
#${project_root_dir}
#      - ori_data
#      - data
#      - DSL
#        - configs
#        - ...

For COCO Partially Labeled Data protocol

1. Download coco dataset and unzip it

mkdir ori_data/coco
cd ori_data/coco

wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/zips/unlabeled2017.zip

unzip annotations_trainval2017.zip -d .
unzip -q train2017.zip -d .
unzip -q val2017.zip -d .
unzip -q unlabeled2017.zip -d .

# resulting format
# ori_data/coco
#   - train2017
#     - xxx.jpg
#   - val2017
#     - xxx.jpg
#   - unlabled2017
#     - xxx.jpg
#   - annotations
#     - xxx.json
#     - ...

2. Convert coco to semicoco dataset

Use (tools/coco_convert2_semicoco_json.py) to generate the DSL-style coco data dir, i.e., semicoco/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/coco_convert2_semicoco_json.py --input ${project_root_dir}/ori_data/coco --output ${project_root_dir}/data/semicoco

You will obtain ${project_root_dir}/data/semicoco/ dir

3. Prepare partially labeled data

Use (data_list/coco_semi/prepare_dta.py) to generate the partially labeled data list_file. Now we take 10% labeled data as example

cd data_list/coco_semi/
python3 prepare_dta.py --percent 10 --root ${project_root_dir}/ori_data/coco --seed 2

You will obtain (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}.json) (data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabel.json) (data_list/coco_semi/semi_supervised/instances_train2017.json) (data_list/coco_semi/semi_supervised/instances_val2017.json)

These above files are only used as image_list.

4. Train supervised baseline model

Train base model via (demo/model_train/baseline_coco.sh); configs are in dir (configs/fcos_semi/); Before running this script please change the corresponding file path in both script and config files.

cd ${project_root_dir}/DSL
./demo/model_train/baseline_coco.sh

5. Generate initial pseudo-labels for unlabeled images(1/2)

Generate the initial pseudo-labels for unlabeled images via (tools/inference_unlabeled_coco_data.sh): please change the corresponding list file path of unlabeled data in the config file, and the model path in tools/inference_unlabeled_coco_data.sh.

./tools/inference_unlabeled_coco_data.sh

Then you will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json) which contains the pseudo-labels.

6. Generate initial pseudo-labels for unlabeled images(2/2)

Use (tools/generate_unlabel_annos_coco.py) to convert the produced (epoch_xxx.pth-unlabeled.bbox.json) above to DSL-style annotations

python3 tools/generate_unlabel_annos_coco.py \ 
          --input_path workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json \
          --input_list data_list/coco_semi/semi_supervised/instances_train2017.${seed}@${percent}-unlabeled.json \
          --cat_info ${project_root_dir}/data/semicoco/mmdet_category_info.json \
          --thres 0.1

You will obtain (workdir_coco/xx/epoch_xxx.pth-unlabeled.bbox.json_thres0.1_annos/) dir which contains the DSL-style annotations.

7. DSL Training

Use (demo/model_train/unlabel_train.sh) to train our semi-supervised algorithm. Before training, please change the corresponding paths in config file and shell script.

./demo/model_train/unlabel_train.sh

For COCO Fully Labeled Data protocol

The overall steps are similar as steps in above Partially Labeled Data guaidline. The additional steps to do is to download and organize the new unlabeled data.

1. Organize the new images

Put all the jpg images into the generated DSL-style semicoco data dir like: semicoco/unlabel_images/full/xx.jpg;

cd ${project_root_dir}
cp ori_data/coco/unlabled2017/* data/semicoco/unlabel_images/full/

2. Download the corresponding files

Download (STAC_JSON.tar.gz) and unzip it; move (coco/annotations/instances_unlabeled2017.json) to (data_list/coco_semi/semi_supervised/) dir

cd ${project_root_dir}/ori_data
wget https://storage.cloud.google.com/gresearch/ssl_detection/STAC_JSON.tar
tar -xf STAC_JSON.tar.gz

# resulting files
# coco/annotations/instances_unlabeled2017.json
# coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json
# voc/VOCdevkit/VOC2007/instances_diff_test.json
# voc/VOCdevkit/VOC2007/instances_diff_trainval.json
# voc/VOCdevkit/VOC2007/instances_test.json
# voc/VOCdevkit/VOC2007/instances_trainval.json
# voc/VOCdevkit/VOC2012/instances_diff_trainval.json
# voc/VOCdevkit/VOC2012/instances_trainval.json

cp coco/annotations/instances_unlabeled2017.json ${project_root_dir}/DSL/data_list/coco_semi/semi_supervised/

3. Train as steps4-steps7 which are used in Partially Labeled data protocol

Change the corresponding paths before training.

For VOC dataset

1. Download VOC data

Download VOC dataset to dir xx and unzip it, we will get (VOCdevkit/)

cd ${project_root_dir}/ori_data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

# resulting format
# ori_data/
#   - VOCdevkit
#     - VOC2007
#       - Annotations
#       - JPEGImages
#       - ...
#     - VOC2012
#       - Annotations
#       - JPEGImages
#       - ...

2. Convert voc to semivoc dataset

Use (tools/voc_convert2_semivoc_json.py) to generate DSL-style voc data dir, i.e., semivoc/, which matches the code of unlabel training and pseudo-label update.

cd ${project_root_dir}/DSL
python3 tools/voc_convert2_semivoc_json.py --input ${project_root_dir}/ori_data/VOCdevkit --output ${project_root_dir}/data/semivoc

And then use (tools/dataset_converters/pascal_voc.py) to convert the original voc list file to coco style file for evaluating VOC performances under COCO 'bbox' metric.

python3 tools/dataset_converters/pascal_voc.py ${project_root_dir}/ori_data/VOCdevkit -o data_list/voc_semi/ --out-format coco

You will obtain the list files in COCO-Style in dir: data_list/voc_semi/. These files are only used as val files, please refer to (configs/fcos_semi/voc/xx.py)

3. Combine with coco20class images

Copy (instances_unlabeledtrainval20class.json) to (data_list/voc_semi/) dir; and then run script (data_list/voc_semi/combine_coco20class_voc12.py) to produce the additional unlabel set with coco20classes.

cp ${project_root_dir}/ori_data/coco/annotations/semi_supervised/instances_unlabeledtrainval20class.json data_list/voc_semi/
cd data_list/voc_semi
python3 data_list/voc_semi/combine_coco20class_voc12.py \
                --cocojson instances_unlabeledtrainval20class.json \
                --vocjson voc12_trainval.json \
                --cocoimage_path ${project_root_dir}/data/semicoco/images/full \
                --outtxt_path ${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/ \
                --outimage_path ${project_root_dir}/data/semivoc/unlabel_images/full
cd ../..

You will obtain the corresponding list file(.json): (voc12_trainval_coco20class.json), and the corresponding coco20classes images will be copyed to (${project_root_dir}/data/semivoc/unlabeled_images/full/) and the list file(.txt) will also be generated at (${project_root_dir}/data/semivoc/unlabel_prepared_annos/Industry/voc12_trainval_coco20class.txt)

4. Train as steps4-steps7 which are used in Partially Labeled data protocol

Please change the corresponding paths before training, and refer to configs/fcos_semi/voc/xx.py.

Testing

Please refer to (tools/semi_dist_test.sh).

./tools/semi_dist_test.sh

Acknowledgement

Owner
Bhchen
Bhchen
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Deep Unsupervised 3D SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment.

(ACMMM 2021 Oral) SfM Face Reconstruction Based on Massive Landmark Bundle Adjustment This repository shows two tasks: Face landmark detection and Fac

BoomStar 51 Dec 13, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
[SIGGRAPH Asia 2021] Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN

Pose with Style: Detail-Preserving Pose-Guided Image Synthesis with Conditional StyleGAN [Paper] [Project Website] [Output resutls] Official Pytorch i

Badour AlBahar 215 Dec 17, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Phil Wang 180 Jan 05, 2023
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022