(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Overview

Dressing in Order (DiOr)

👚 [Paper] 👖 [Webpage] 👗 [Running this code]

The official implementation of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing". by Aiyu Cui, Daniel McKee and Svetlana Lazebnik. (ICCV 2021)

🔔 Updates

Supported Try-on Applications

Supported Editing Applications

More results

Play with demo.ipynb!


Get Started

Please follow the installation instruction in GFLA to install the environment.

Then run

pip install -r requirements.txt

If one wants to run inference only: You can use later version of PyTorch and you don't need to worry about how to install GFLA's cuda functions. Please specify --frozen_flownet.

Dataset

We run experiments on Deepfashion Dataset. To set up the dataset:

  1. Download and unzip img_highres.zip from the deepfashion inshop dataset at $DATA_ROOT
  2. Download the train/val split and pre-processed keypoints annotations from GFLA source or PATN source, and put the .csv and .lst files at $DATA_ROOT.
    • If one wants to extract the keypoints from scratch, please run OpenPose as the pose estimator. Please follow the instruction from PATN for how to generate the keypoints in desired format.
  3. Run python tools/generate_fashion_dataset.py to split the data. (Please specify the $DATA_ROOT accordingly.)
  4. Get human parsing. You can obtain the parsing by either:
    • Run off-the-shelf human parser SCHP (with LIP labels) on $DATA_ROOT/train and $DATA_ROOT/test. Name the output parses folder as $DATA_ROOT/trainM_lip and $DATA_ROOT/testM_lip respectively.
    • Download the preprocessed parsing from here and put it under $DATA_ROOT.
  5. Download standard_test_anns.txt for fast visualization.

After the processing, you should have the dataset folder formatted like:

+ $DATA_ROOT
|   + train (all training images)
|   |   - xxx.jpg
|   |     ...
|   + trainM_lip (human parse of all training images)
|   |   - xxx.png
|   |     ...
|   + test (all test images)
|   |   - xxx.jpg
|   |     ...
|   + testM_lip (human parse of all test images)
|   |   - xxx.png
|   |     ...
|   - fashion-pairs-train.csv (paired poses for training)
|   - fashion-pairs-test.csv (paired poses for test)
|   - fashion-annotation-train.csv (keypoints for training images)
|   - fashion-annotation-test.csv  (keypoints for test images)
|   - train.lst
|   - test.lst
|   - standard_test_anns.txt

Run Demo

Please download the pretrained weights from here and unzip at checkpoints/.

After downloading the pretrained model and setting the data, you can try out our applications in notebook demo.ipynb.

(The checkpoints above are reproduced, so there could be slightly difference in quantitative evaluation from the reported results. To get the original results, please check our released generated images here.)

(DIORv1_64 was trained with a minor difference in code, but it may give better visual results in some applications. If one wants to try it, specify --netG diorv1.)


Training

Warmup the Global Flow Field Estimator

Note, if you don't want to warmup the Global Flow Field Estimator, you can extract its weights from GFLA by downloading the pretrained weights GFLA from here.

Otherwise, run

sh scripts/run_pose.sh

Training

After warming up the flownet, train the pipeline by

sh scripts/run_train.sh

Run tensorboard --logdir checkpoints/$EXP_NAME/train to check tensorboard. Resetting discriminators may help training when it stucks at local minimals.

Evaluations

To download our generated images (256x176 reported in paper): here.

SSIM, FID and LPIPS

To run evaluation (SSIM, FID and LPIPS) on pose transfer task:

sh scripts/run_eval.sh

Cite us!

If you find this work is helpful, please consider to star 🌟 this repo and cite us as

@article{cui2021dressing,
  title={Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing},
  author={Cui, Aiyu and McKee, Daniel and Lazebnik, Svetlana},
  journal={arXiv preprint arXiv:2104.07021},
  year={2021}
}

Acknowledgements

This repository is built up on GFLA, pytorch-CycleGAN-and-pix2pix, PATN and MUNIT. Please be aware of their licenses when using the code.

Thanks a lot for the great work to the pioneer researchers!

Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Cortex-compatible model server for Python and TensorFlow

Nucleus model server Nucleus is a model server for TensorFlow and generic Python models. It is compatible with Cortex clusters, Kubernetes clusters, a

Cortex Labs 14 Nov 27, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
This is the source code of the solver used to compete in the International Timetabling Competition 2019.

ITC2019 Solver This is the source code of the solver used to compete in the International Timetabling Competition 2019. Building .NET Core (2.1 or hig

Edon Gashi 8 Jan 22, 2022
PyTorch implementation of federated learning framework based on the acceleration of global momentum

Federated Learning with Acceleration of Global Momentum PyTorch implementation of federated learning framework based on the acceleration of global mom

0 Dec 23, 2021
Multi Camera Calibration

Multi Camera Calibration 'modules/camera_calibration/app/camera_calibration.cpp' is for calculating extrinsic parameter of each individual cameras. 'm

7 Dec 01, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
Code for the paper "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021)

MASTER-PyTorch PyTorch reimplementation of "MASTER: Multi-Aspect Non-local Network for Scene Text Recognition" (Pattern Recognition 2021). This projec

Wenwen Yu 255 Dec 29, 2022
A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis

A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware Image Synthesis Figure: Shape-Accurate 3D-Aware Image Synthesis. A Shading-Guid

Xingang Pan 115 Dec 18, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

109 Dec 29, 2022
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023