Python wrapper for Stanford CoreNLP tools v3.4.1

Overview

Python interface to Stanford Core NLP tools v3.4.1

This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can either be imported as a module or run as a JSON-RPC server. Because it uses many large trained models (requiring 3GB RAM on 64-bit machines and usually a few minutes loading time), most applications will probably want to run it as a server.

  • Python interface to Stanford CoreNLP tools: tagging, phrase-structure parsing, dependency parsing, named-entity recognition, and coreference resolution.
  • Runs an JSON-RPC server that wraps the Java server and outputs JSON.
  • Outputs parse trees which can be used by nltk.

It depends on pexpect and includes and uses code from jsonrpc and python-progressbar.

It runs the Stanford CoreNLP jar in a separate process, communicates with the java process using its command-line interface, and makes assumptions about the output of the parser in order to parse it into a Python dict object and transfer it using JSON. The parser will break if the output changes significantly, but it has been tested on Core NLP tools version 3.4.1 released 2014-08-27.

Download and Usage

To use this program you must download and unpack the compressed file containing Stanford's CoreNLP package. By default, corenlp.py looks for the Stanford Core NLP folder as a subdirectory of where the script is being run. In other words:

sudo pip install pexpect unidecode
git clone git://github.com/dasmith/stanford-corenlp-python.git
cd stanford-corenlp-python
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2014-08-27.zip
unzip stanford-corenlp-full-2014-08-27.zip

Then launch the server:

python corenlp.py

Optionally, you can specify a host or port:

python corenlp.py -H 0.0.0.0 -p 3456

That will run a public JSON-RPC server on port 3456.

Assuming you are running on port 8080, the code in client.py shows an example parse:

import jsonrpc
from simplejson import loads
server = jsonrpc.ServerProxy(jsonrpc.JsonRpc20(),
                             jsonrpc.TransportTcpIp(addr=("127.0.0.1", 8080)))

result = loads(server.parse("Hello world.  It is so beautiful"))
print "Result", result

That returns a dictionary containing the keys sentences and coref. The key sentences contains a list of dictionaries for each sentence, which contain parsetree, text, tuples containing the dependencies, and words, containing information about parts of speech, recognized named-entities, etc:

{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
                 u'text': u'Hello world!',
                 u'tuples': [[u'dep', u'world', u'Hello'],
                             [u'root', u'ROOT', u'world']],
                 u'words': [[u'Hello',
                             {u'CharacterOffsetBegin': u'0',
                              u'CharacterOffsetEnd': u'5',
                              u'Lemma': u'hello',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'UH'}],
                            [u'world',
                             {u'CharacterOffsetBegin': u'6',
                              u'CharacterOffsetEnd': u'11',
                              u'Lemma': u'world',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'NN'}],
                            [u'!',
                             {u'CharacterOffsetBegin': u'11',
                              u'CharacterOffsetEnd': u'12',
                              u'Lemma': u'!',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'.'}]]},
                {u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
                 u'text': u'It is so beautiful.',
                 u'tuples': [[u'nsubj', u'beautiful', u'It'],
                             [u'cop', u'beautiful', u'is'],
                             [u'advmod', u'beautiful', u'so'],
                             [u'root', u'ROOT', u'beautiful']],
                 u'words': [[u'It',
                             {u'CharacterOffsetBegin': u'14',
                              u'CharacterOffsetEnd': u'16',
                              u'Lemma': u'it',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'PRP'}],
                            [u'is',
                             {u'CharacterOffsetBegin': u'17',
                              u'CharacterOffsetEnd': u'19',
                              u'Lemma': u'be',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'VBZ'}],
                            [u'so',
                             {u'CharacterOffsetBegin': u'20',
                              u'CharacterOffsetEnd': u'22',
                              u'Lemma': u'so',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'RB'}],
                            [u'beautiful',
                             {u'CharacterOffsetBegin': u'23',
                              u'CharacterOffsetEnd': u'32',
                              u'Lemma': u'beautiful',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'JJ'}],
                            [u'.',
                             {u'CharacterOffsetBegin': u'32',
                              u'CharacterOffsetEnd': u'33',
                              u'Lemma': u'.',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}

To use it in a regular script (useful for debugging), load the module instead:

from corenlp import *
corenlp = StanfordCoreNLP()  # wait a few minutes...
corenlp.parse("Parse this sentence.")

The server, StanfordCoreNLP(), takes an optional argument corenlp_path which specifies the path to the jar files. The default value is StanfordCoreNLP(corenlp_path="./stanford-corenlp-full-2014-08-27/").

Coreference Resolution

The library supports coreference resolution, which means pronouns can be "dereferenced." If an entry in the coref list is, [u'Hello world', 0, 1, 0, 2], the numbers mean:

  • 0 = The reference appears in the 0th sentence (e.g. "Hello world")
  • 1 = The 2nd token, "world", is the headword of that sentence
  • 0 = 'Hello world' begins at the 0th token in the sentence
  • 2 = 'Hello world' ends before the 2nd token in the sentence.

Questions

Stanford CoreNLP tools require a large amount of free memory. Java 5+ uses about 50% more RAM on 64-bit machines than 32-bit machines. 32-bit machine users can lower the memory requirements by changing -Xmx3g to -Xmx2g or even less. If pexpect timesout while loading models, check to make sure you have enough memory and can run the server alone without your kernel killing the java process:

java -cp stanford-corenlp-2014-08-27.jar:stanford-corenlp-3.4.1-models.jar:xom.jar:joda-time.jar -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP -props default.properties

You can reach me, Dustin Smith, by sending a message on GitHub or through email (contact information is available on my webpage).

License & Contributors

This is free and open source software and has benefited from the contribution and feedback of others. Like Stanford's CoreNLP tools, it is covered under the GNU General Public License v2 +, which in short means that modifications to this program must maintain the same free and open source distribution policy.

I gratefully welcome bug fixes and new features. If you have forked this repository, please submit a pull request so others can benefit from your contributions. This project has already benefited from contributions from these members of the open source community:

Thank you!

Related Projects

Maintainers of the Core NLP library at Stanford keep an updated list of wrappers and extensions. See Brendan O'Connor's stanford_corenlp_pywrapper for a different approach more suited to batch processing.

Owner
Dustin Smith
Dustin Smith
Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation (SIGGRAPH Asia 2021)

Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation This repository contains the implementation of the following paper: Live Speech

OldSix 575 Dec 31, 2022
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Sequence-to-sequence framework with a focus on Neural Machine Translation based on Apache MXNet

Amazon Web Services - Labs 1.1k Dec 27, 2022
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

Translators - is a library which aims to bring free, multiple, enjoyable translation to individuals and students in Python

UlionTse 907 Dec 27, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module.

Import Subtitles for Blender VSE Addon for adding subtitle files to blender VSE as Text sequences. Using pysub2 python module. Supported formats by py

4 Feb 27, 2022
A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code or write code yourself

Scriptfab - What is it? A python script to prefab your scripts/text files, and re create them with ease and not have to open your browser to copy code

DevNugget 3 Jul 28, 2021
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Text-Based zombie apocalyptic decision-making game in Python

Inspiration We shared university first year game coursework.[to gauge previous experience and start brainstorming] Adapted a particular nuclear fallou

Amin Sabbagh 2 Feb 17, 2022
RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network trained to work with different pairs (images, texts).

RuCLIPtiny Zero-shot image classification model for Russian language RuCLIP tiny (Russian Contrastive Language–Image Pretraining) is a neural network

Shahmatov Arseniy 26 Sep 20, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Using context-free grammar formalism to parse English sentences to determine their structure to help computer to better understand the meaning of the sentence.

Sentance Parser Executing the Program Make sure Python 3.6+ is installed. Install requirements $ pip install requirements.txt Run the program:

Vaibhaw 12 Sep 28, 2022