Python wrapper for Stanford CoreNLP tools v3.4.1

Overview

Python interface to Stanford Core NLP tools v3.4.1

This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can either be imported as a module or run as a JSON-RPC server. Because it uses many large trained models (requiring 3GB RAM on 64-bit machines and usually a few minutes loading time), most applications will probably want to run it as a server.

  • Python interface to Stanford CoreNLP tools: tagging, phrase-structure parsing, dependency parsing, named-entity recognition, and coreference resolution.
  • Runs an JSON-RPC server that wraps the Java server and outputs JSON.
  • Outputs parse trees which can be used by nltk.

It depends on pexpect and includes and uses code from jsonrpc and python-progressbar.

It runs the Stanford CoreNLP jar in a separate process, communicates with the java process using its command-line interface, and makes assumptions about the output of the parser in order to parse it into a Python dict object and transfer it using JSON. The parser will break if the output changes significantly, but it has been tested on Core NLP tools version 3.4.1 released 2014-08-27.

Download and Usage

To use this program you must download and unpack the compressed file containing Stanford's CoreNLP package. By default, corenlp.py looks for the Stanford Core NLP folder as a subdirectory of where the script is being run. In other words:

sudo pip install pexpect unidecode
git clone git://github.com/dasmith/stanford-corenlp-python.git
cd stanford-corenlp-python
wget http://nlp.stanford.edu/software/stanford-corenlp-full-2014-08-27.zip
unzip stanford-corenlp-full-2014-08-27.zip

Then launch the server:

python corenlp.py

Optionally, you can specify a host or port:

python corenlp.py -H 0.0.0.0 -p 3456

That will run a public JSON-RPC server on port 3456.

Assuming you are running on port 8080, the code in client.py shows an example parse:

import jsonrpc
from simplejson import loads
server = jsonrpc.ServerProxy(jsonrpc.JsonRpc20(),
                             jsonrpc.TransportTcpIp(addr=("127.0.0.1", 8080)))

result = loads(server.parse("Hello world.  It is so beautiful"))
print "Result", result

That returns a dictionary containing the keys sentences and coref. The key sentences contains a list of dictionaries for each sentence, which contain parsetree, text, tuples containing the dependencies, and words, containing information about parts of speech, recognized named-entities, etc:

{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
                 u'text': u'Hello world!',
                 u'tuples': [[u'dep', u'world', u'Hello'],
                             [u'root', u'ROOT', u'world']],
                 u'words': [[u'Hello',
                             {u'CharacterOffsetBegin': u'0',
                              u'CharacterOffsetEnd': u'5',
                              u'Lemma': u'hello',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'UH'}],
                            [u'world',
                             {u'CharacterOffsetBegin': u'6',
                              u'CharacterOffsetEnd': u'11',
                              u'Lemma': u'world',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'NN'}],
                            [u'!',
                             {u'CharacterOffsetBegin': u'11',
                              u'CharacterOffsetEnd': u'12',
                              u'Lemma': u'!',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'.'}]]},
                {u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
                 u'text': u'It is so beautiful.',
                 u'tuples': [[u'nsubj', u'beautiful', u'It'],
                             [u'cop', u'beautiful', u'is'],
                             [u'advmod', u'beautiful', u'so'],
                             [u'root', u'ROOT', u'beautiful']],
                 u'words': [[u'It',
                             {u'CharacterOffsetBegin': u'14',
                              u'CharacterOffsetEnd': u'16',
                              u'Lemma': u'it',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'PRP'}],
                            [u'is',
                             {u'CharacterOffsetBegin': u'17',
                              u'CharacterOffsetEnd': u'19',
                              u'Lemma': u'be',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'VBZ'}],
                            [u'so',
                             {u'CharacterOffsetBegin': u'20',
                              u'CharacterOffsetEnd': u'22',
                              u'Lemma': u'so',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'RB'}],
                            [u'beautiful',
                             {u'CharacterOffsetBegin': u'23',
                              u'CharacterOffsetEnd': u'32',
                              u'Lemma': u'beautiful',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'JJ'}],
                            [u'.',
                             {u'CharacterOffsetBegin': u'32',
                              u'CharacterOffsetEnd': u'33',
                              u'Lemma': u'.',
                              u'NamedEntityTag': u'O',
                              u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}

To use it in a regular script (useful for debugging), load the module instead:

from corenlp import *
corenlp = StanfordCoreNLP()  # wait a few minutes...
corenlp.parse("Parse this sentence.")

The server, StanfordCoreNLP(), takes an optional argument corenlp_path which specifies the path to the jar files. The default value is StanfordCoreNLP(corenlp_path="./stanford-corenlp-full-2014-08-27/").

Coreference Resolution

The library supports coreference resolution, which means pronouns can be "dereferenced." If an entry in the coref list is, [u'Hello world', 0, 1, 0, 2], the numbers mean:

  • 0 = The reference appears in the 0th sentence (e.g. "Hello world")
  • 1 = The 2nd token, "world", is the headword of that sentence
  • 0 = 'Hello world' begins at the 0th token in the sentence
  • 2 = 'Hello world' ends before the 2nd token in the sentence.

Questions

Stanford CoreNLP tools require a large amount of free memory. Java 5+ uses about 50% more RAM on 64-bit machines than 32-bit machines. 32-bit machine users can lower the memory requirements by changing -Xmx3g to -Xmx2g or even less. If pexpect timesout while loading models, check to make sure you have enough memory and can run the server alone without your kernel killing the java process:

java -cp stanford-corenlp-2014-08-27.jar:stanford-corenlp-3.4.1-models.jar:xom.jar:joda-time.jar -Xmx3g edu.stanford.nlp.pipeline.StanfordCoreNLP -props default.properties

You can reach me, Dustin Smith, by sending a message on GitHub or through email (contact information is available on my webpage).

License & Contributors

This is free and open source software and has benefited from the contribution and feedback of others. Like Stanford's CoreNLP tools, it is covered under the GNU General Public License v2 +, which in short means that modifications to this program must maintain the same free and open source distribution policy.

I gratefully welcome bug fixes and new features. If you have forked this repository, please submit a pull request so others can benefit from your contributions. This project has already benefited from contributions from these members of the open source community:

Thank you!

Related Projects

Maintainers of the Core NLP library at Stanford keep an updated list of wrappers and extensions. See Brendan O'Connor's stanford_corenlp_pywrapper for a different approach more suited to batch processing.

Owner
Dustin Smith
Dustin Smith
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

7 Aug 25, 2022
GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training

GAP-text2SQL: Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training Code and model from our AAAI 2021 paper

Amazon Web Services - Labs 83 Jan 09, 2023
source code for paper: WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach.

WhiteningBERT Source code and data for paper WhiteningBERT: An Easy Unsupervised Sentence Embedding Approach. Preparation git clone https://github.com

49 Dec 17, 2022
Klexikon: A German Dataset for Joint Summarization and Simplification

Klexikon: A German Dataset for Joint Summarization and Simplification Dennis Aumiller and Michael Gertz Heidelberg University Under submission at LREC

Dennis Aumiller 8 Jan 03, 2023
Machine translation models released by the Gourmet project

Gourmet Models Overview The Gourmet project has released several machine translation models to translate low-resource languages. This repository conta

Edinburgh NLP 5 Dec 08, 2021
The entmax mapping and its loss, a family of sparse softmax alternatives.

entmax This package provides a pytorch implementation of entmax and entmax losses: a sparse family of probability mappings and corresponding loss func

DeepSPIN 330 Dec 22, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
CodeBERT: A Pre-Trained Model for Programming and Natural Languages.

CodeBERT This repo provides the code for reproducing the experiments in CodeBERT: A Pre-Trained Model for Programming and Natural Languages. CodeBERT

Microsoft 1k Jan 03, 2023
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
Nested Named Entity Recognition

Nested Named Entity Recognition Training Dataset: CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark url: https://tianchi.aliyun.

8 Dec 25, 2022
Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries

GTFONow Automatic privilege escalation for misconfigured capabilities, sudo and suid binaries. Features Automatically escalate privileges using miscon

101 Jan 03, 2023
In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset.

Med-VQA In this repository we have tested 3 VQA models on the ImageCLEF-2019 dataset. Two of these are made on top of Facebook AI Reasearch's Multi-Mo

Kshitij Ambilduke 8 Apr 14, 2022
Prithivida 690 Jan 04, 2023
Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow.

Malaya-Speech is a Speech-Toolkit library for bahasa Malaysia, powered by Deep Learning Tensorflow. Documentation Proper documentation is available at

HUSEIN ZOLKEPLI 151 Jan 05, 2023
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
A model library for exploring state-of-the-art deep learning topologies and techniques for optimizing Natural Language Processing neural networks

A Deep Learning NLP/NLU library by Intel® AI Lab Overview | Models | Installation | Examples | Documentation | Tutorials | Contributing NLP Architect

Intel Labs 2.9k Dec 31, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022