[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Overview

Deep Equilibrium Optical Flow Estimation

PWC

This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*, Zhengyang Geng*, Yash Savani and J. Zico Kolter.

A deep equilibrium (DEQ) flow estimator directly models the flow as a path-independent, “infinite-level” fixed-point solving process. We propose to use this implicit framework to replace the existing recurrent approach to optical flow estimation. The DEQ flows converge faster, require less memory, are often more accurate, and are compatible with prior model designs (e.g., RAFT and GMA).

Demo

We provide a demo video of the DEQ flow results below.

demo.mp4

Requirements

The code in this repo has been tested on PyTorch v1.10.0. Install required environments through the following commands.

conda create --name deq python==3.6.10
conda activate deq
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
conda install tensorboard scipy opencv matplotlib einops termcolor -c conda-forge

Download the following datasets into the datasets directory.

Inference

Download the pretrained checkpoints into the checkpoints directory. Run the following command to infer over the Sintel train set and the KITTI train set.

bash val.sh

You may expect the following performance statistics of given checkpoints. This is a reference log.

Checkpoint Name Sintel (clean) Sintel (final) KITTI AEPE KITTI F1-all
DEQ-Flow-B 1.43 2.79 5.43 16.67
DEQ-Flow-H-1 1.45 2.58 3.97 13.41
DEQ-Flow-H-2 1.37 2.62 3.97 13.62
DEQ-Flow-H-3 1.36 2.62 4.02 13.92

Visualization

Download the pretrained checkpoints into the checkpoints directory. Run the following command to visualize the optical flow estimation over the KITTI test set.

bash viz.sh

Training

Download FlyingChairs-pretrained checkpoints into the checkpoints directory.

For the efficiency mode, you can run 1-step gradient to train DEQ-Flow-B via the following command. Memory overhead per GPU is about 5800 MB.

You may expect best results of about 1.46 (AEPE) on Sintel (clean), 2.85 (AEPE) on Sintel (final), 5.29 (AEPE) and 16.24 (F1-all) on KITTI. This is a reference log.

bash train_B_demo.sh

For training a demo of DEQ-Flow-H, you can run this command. Memory overhead per GPU is about 6300 MB. It can be further reduced to about 4200 MB per GPU when combined with --mixed-precision. You can further reduce the memory cost if you employ the CUDA implementation of cost volumn by RAFT.

You may expect best results of about 1.41 (AEPE) on Sintel (clean), 2.76 (AEPE) on Sintel (final), 4.44 (AEPE) and 14.81 (F1-all) on KITTI. This is a reference log.

bash train_H_demo.sh

To train DEQ-Flow-B on Chairs and Things, use the following command.

bash train_B.sh

For the performance mode, you can run this command to train DEQ-Flow-H using the C+T and C+T+S+K+H schedule. You may expect the performance of <1.40 (AEPE) on Sintel (clean), around 2.60 (AEPE) on Sintel (final), around 4.00 (AEPE) and 13.6 (F1-all) on KITTI. DEQ-Flow-H-1,2,3 are checkpoints from three runs.

Currently, this training protocol could entail resources slightly more than two 11 GB GPUs. In the near future, we will upload an implementation revision (of the DEQ models) that shall further reduce this overhead to less than two 11 GB GPUs.

bash train_H_full.sh

Code Usage

Under construction. We will provide more detailed instructions on the code usage (e.g., argparse flags, fixed-point solvers, backward IFT modes) in the coming days.

A Tutorial on DEQ

If you hope to learn more about DEQ models, here is an official NeurIPS tutorial on implicit deep learning. Enjoy yourself!

Reference

If you find our work helpful to your research, please consider citing this paper. :)

@inproceedings{deq-flow,
    author = {Bai, Shaojie and Geng, Zhengyang and Savani, Yash and Kolter, J. Zico},
    title = {Deep Equilibrium Optical Flow Estimation},
    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2022}
}

Credit

A lot of the utility code in this repo were adapted from the RAFT repo and the DEQ repo.

Contact

Feel free to contact us if you have additional questions. Please drop an email through [email protected] (or Twitter).

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
Lab Materials for MIT 6.S191: Introduction to Deep Learning

This repository contains all of the code and software labs for MIT 6.S191: Introduction to Deep Learning! All lecture slides and videos are available

Alexander Amini 5.6k Dec 26, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Scalable training for dense retrieval models.

Scalable implementation of dense retrieval. Training on cluster By default it trains locally: PYTHONPATH=.:$PYTHONPATH python dpr_scale/main.py traine

Facebook Research 90 Dec 28, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023