Install alphafold on the local machine, get out of docker.

Overview

header

AlphaFold

This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP14 and published in Nature. For simplicity, we refer to this model as AlphaFold throughout the rest of this document.

Any publication that discloses findings arising from using this source code or the model parameters should cite the AlphaFold paper.

CASP14 predictions

First time setup

The following steps are required in order to run AlphaFold:

Install on Ubuntu

  1. Requirements

  2. Install softwares

    git clone https://github.com/kuixu/alphafold.git
    cd alphafold
    
    ./install_on_local.sh

    or step by step

        
    conda create -n af2 python=3.8 -y
    conda activate af2
    
    conda install -y -c nvidia cudnn==8.0.4
    conda install -y -c bioconda hmmer hhsuite==3.3.0 kalign2
    
    conda install -y -c conda-forge \
        openmm=7.5.1 \
        pdbfixer \
        pip
    
    # python pkgs
    pip3 install --upgrade pip \
        && pip3 install -r ./requirements.txt \
        && pip3 install --upgrade "jax[cuda111]" -f \
        https://storage.googleapis.com/jax-releases/jax_releases.html
    
    # work_path=/path/to/alphafold-code
    work_path=$(PWD)
    
    # update openmm 
    a=$(which python)
    cd $(dirname $(dirname $a))/lib/python3.8/site-packages
    patch -p0 < $work_path/docker/openmm.patch
    
    
    
  3. Download genetic databases (see below).

  4. Download model parameters (see below).

  5. Set path.

    # Set to target of scripts/download_all_databases.sh
    DOWNLOAD_DIR = '/path/to/database'
    
    # Path to a directory that will store the results.
    output_dir = '/path/to/output_dir'
    
    

Genetic databases

This step requires rsync and aria2c to be installed on your machine.

AlphaFold needs multiple genetic (sequence) databases to run:

We provide a script scripts/download_all_data.sh that can be used to download and set up all of these databases. This should take 8–12 hours.

📒 Note: The total download size is around 428 GB and the total size when unzipped is 2.2 TB. Please make sure you have a large enough hard drive space, bandwidth and time to download.

This script will also download the model parameter files. Once the script has finished, you should have the following directory structure:

$DOWNLOAD_DIR/                             # Total: ~ 2.2 TB (download: 428 GB)
    bfd/                                   # ~ 1.8 TB (download: 271.6 GB)
        # 6 files.
    mgnify/                                # ~ 64 GB (download: 32.9 GB)
        mgy_clusters.fa
    params/                                # ~ 3.5 GB (download: 3.5 GB)
        # 5 CASP14 models,
        # 5 pTM models,
        # LICENSE,
        # = 11 files.
    pdb70/                                 # ~ 56 GB (download: 19.5 GB)
        # 9 files.
    pdb_mmcif/                             # ~ 206 GB (download: 46 GB)
        mmcif_files/
            # About 180,000 .cif files.
        obsolete.dat
    uniclust30/                            # ~ 87 GB (download: 24.9 GB)
        uniclust30_2018_08/
            # 13 files.
    uniref90/                              # ~ 59 GB (download: 29.7 GB)
        uniref90.fasta

Model parameters

While the AlphaFold code is licensed under the Apache 2.0 License, the AlphaFold parameters are made available for non-commercial use only under the terms of the CC BY-NC 4.0 license. Please see the Disclaimer below for more detail.

The AlphaFold parameters are available from https://storage.googleapis.com/alphafold/alphafold_params_2021-07-14.tar, and are downloaded as part of the scripts/download_all_data.sh script. This script will download parameters for:

  • 5 models which were used during CASP14, and were extensively validated for structure prediction quality (see Jumper et al. 2021, Suppl. Methods 1.12 for details).
  • 5 pTM models, which were fine-tuned to produce pTM (predicted TM-score) and predicted aligned error values alongside their structure predictions (see Jumper et al. 2021, Suppl. Methods 1.9.7 for details).

Running AlphaFold on local

  1. Clone this repository and cd into it.

  2. Run run_alphafold.py pointing to a FASTA file containing the protein sequence for which you wish to predict the structure. If you are predicting the structure of a protein that is already in PDB and you wish to avoid using it as a template, then max_template_date must be set to be before the release date of the structure. For example, for the T1050 CASP14 target:

    python3 run_alphafold.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14
    # or simply
    exp/run_local.sh T1050.fasta

    By default, Alphafold will attempt to use all visible GPU devices. To use a subset, specify a comma-separated list of GPU UUID(s) or index(es) using the CUDA_VISIBLE_DEVICES=0.

  3. You can control AlphaFold speed / quality tradeoff by adding either --preset=full_dbs or --preset=casp14 to the run command. We provide the following presets:

    • casp14: This preset uses the same settings as were used in CASP14. It runs with all genetic databases and with 8 ensemblings.
    • full_dbs: The model in this preset is 8 times faster than the casp14 preset with a very minor quality drop (-0.1 average GDT drop on CASP14 domains). It runs with all genetic databases and with no ensembling.

    Running the command above with the casp14 preset would look like this:

    python3 docker/run_docker.py --fasta_paths=T1050.fasta --max_template_date=2020-05-14 --preset=casp14

AlphaFold output

The outputs will be in a subfolder of output_dir in run_docker.py. They include the computed MSAs, unrelaxed structures, relaxed structures, ranked structures, raw model outputs, prediction metadata, and section timings. The output_dir directory will have the following structure:

output_dir/
    features.pkl
    ranked_{0,1,2,3,4}.pdb
    ranking_debug.json
    relaxed_model_{1,2,3,4,5}.pdb
    result_model_{1,2,3,4,5}.pkl
    timings.json
    unrelaxed_model_{1,2,3,4,5}.pdb
    msas/
        bfd_uniclust_hits.a3m
        mgnify_hits.sto
        uniref90_hits.sto

The contents of each output file are as follows:

  • features.pkl – A pickle file containing the input feature Numpy arrays used by the models to produce the structures.
  • unrelaxed_model_*.pdb – A PDB format text file containing the predicted structure, exactly as outputted by the model.
  • relaxed_model_*.pdb – A PDB format text file containing the predicted structure, after performing an Amber relaxation procedure on the unrelaxed structure prediction, see Jumper et al. 2021, Suppl. Methods 1.8.6 for details.
  • ranked_*.pdb – A PDB format text file containing the relaxed predicted structures, after reordering by model confidence. Here ranked_0.pdb should contain the prediction with the highest confidence, and ranked_4.pdb the prediction with the lowest confidence. To rank model confidence, we use predicted LDDT (pLDDT), see Jumper et al. 2021, Suppl. Methods 1.9.6 for details.
  • ranking_debug.json – A JSON format text file containing the pLDDT values used to perform the model ranking, and a mapping back to the original model names.
  • timings.json – A JSON format text file containing the times taken to run each section of the AlphaFold pipeline.
  • msas/ - A directory containing the files describing the various genetic tool hits that were used to construct the input MSA.
  • result_model_*.pkl – A pickle file containing a nested dictionary of the various Numpy arrays directly produced by the model. In addition to the output of the structure module, this includes auxiliary outputs such as distograms and pLDDT scores. If using the pTM models then the pTM logits will also be contained in this file.

This code has been tested to match mean top-1 accuracy on a CASP14 test set with pLDDT ranking over 5 model predictions (some CASP targets were run with earlier versions of AlphaFold and some had manual interventions; see our forthcoming publication for details). Some targets such as T1064 may also have high individual run variance over random seeds.

Inferencing many proteins

The provided inference script is optimized for predicting the structure of a single protein, and it will compile the neural network to be specialized to exactly the size of the sequence, MSA, and templates. For large proteins, the compile time is a negligible fraction of the runtime, but it may become more significant for small proteins or if the multi-sequence alignments are already precomputed. In the bulk inference case, it may make sense to use our make_fixed_size function to pad the inputs to a uniform size, thereby reducing the number of compilations required.

We do not provide a bulk inference script, but it should be straightforward to develop on top of the RunModel.predict method with a parallel system for precomputing multi-sequence alignments. Alternatively, this script can be run repeatedly with only moderate overhead.

Note on reproducibility

AlphaFold's output for a small number of proteins has high inter-run variance, and may be affected by changes in the input data. The CASP14 target T1064 is a notable example; the large number of SARS-CoV-2-related sequences recently deposited changes its MSA significantly. This variability is somewhat mitigated by the model selection process; running 5 models and taking the most confident.

To reproduce the results of our CASP14 system as closely as possible you must use the same database versions we used in CASP. These may not match the default versions downloaded by our scripts.

For genetics:

For templates:

  • PDB: (downloaded 2020-05-14)
  • PDB70: (downloaded 2020-05-13)

An alternative for templates is to use the latest PDB and PDB70, but pass the flag --max_template_date=2020-05-14, which restricts templates only to structures that were available at the start of CASP14.

Citing this work

If you use the code or data in this package, please cite:

@Article{AlphaFold2021,
  author  = {Jumper, John and Evans, Richard and Pritzel, Alexander and Green, Tim and Figurnov, Michael and Ronneberger, Olaf and Tunyasuvunakool, Kathryn and Bates, Russ and {\v{Z}}{\'\i}dek, Augustin and Potapenko, Anna and Bridgland, Alex and Meyer, Clemens and Kohl, Simon A A and Ballard, Andrew J and Cowie, Andrew and Romera-Paredes, Bernardino and Nikolov, Stanislav and Jain, Rishub and Adler, Jonas and Back, Trevor and Petersen, Stig and Reiman, David and Clancy, Ellen and Zielinski, Michal and Steinegger, Martin and Pacholska, Michalina and Berghammer, Tamas and Bodenstein, Sebastian and Silver, David and Vinyals, Oriol and Senior, Andrew W and Kavukcuoglu, Koray and Kohli, Pushmeet and Hassabis, Demis},
  journal = {Nature},
  title   = {Highly accurate protein structure prediction with {AlphaFold}},
  year    = {2021},
  doi     = {10.1038/s41586-021-03819-2},
  note    = {(Accelerated article preview)},
}

Acknowledgements

AlphaFold communicates with and/or references the following separate libraries and packages:

We thank all their contributors and maintainers!

License and Disclaimer

This is not an officially supported Google product.

Copyright 2021 DeepMind Technologies Limited.

AlphaFold Code License

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at https://www.apache.org/licenses/LICENSE-2.0.

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Model Parameters License

The AlphaFold parameters are made available for non-commercial use only, under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. You can find details at: https://creativecommons.org/licenses/by-nc/4.0/legalcode

Third-party software

Use of the third-party software, libraries or code referred to in the Acknowledgements section above may be governed by separate terms and conditions or license provisions. Your use of the third-party software, libraries or code is subject to any such terms and you should check that you can comply with any applicable restrictions or terms and conditions before use.

Owner
Kui Xu
Researcher, interested in Computational Biology, and 3D Computer Vision.
Kui Xu
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
「PyTorch Implementation of AnimeGANv2」を用いて、生成した顔画像を元の画像に上書きするデモ

AnimeGANv2-Face-Overlay-Demo PyTorch Implementation of AnimeGANv2を用いて、生成した顔画像を元の画像に上書きするデモです。

KazuhitoTakahashi 21 Oct 18, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Trajectory Extraction of road users via Traffic Camera

Traffic Monitoring Citation The associated paper for this project will be published here as soon as possible. When using this software, please cite th

Julian Strosahl 14 Dec 17, 2022
Code and data (Incidents Dataset) for ECCV 2020 Paper "Detecting natural disasters, damage, and incidents in the wild".

Incidents Dataset See the following pages for more details: Project page: IncidentsDataset.csail.mit.edu. ECCV 2020 Paper "Detecting natural disasters

Ethan Weber 67 Dec 27, 2022
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Log4j JNDI inj. vuln scanner

Log-4-JAM - Log 4 Just Another Mess Log4j JNDI inj. vuln scanner Requirements pip3 install requests_toolbelt Usage # make sure target list has http/ht

Ashish Kunwar 66 Nov 09, 2022
QICK: Quantum Instrumentation Control Kit

QICK: Quantum Instrumentation Control Kit The QICK is a kit of firmware and software to use the Xilinx RFSoC to control quantum systems. It consists o

81 Dec 15, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023