Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Overview

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

In this repo, you will find the instructions on how to request the data set used to perform the experiments of the aforementioned paper. We manually annotated from scratch a subset of 450 images from the UFBA-UESC Dental Images Deep data set, which comprises 1500 panoramic dental radiographs. We consider that this new data set evolves a previously published data set: DNS Panoramic Images. Therefore, we refer to this new data set as the DNS Panoramic Images v2, where DNS stands for Detection, Numbering, and Segmentation. We presented our results at the 17th International Symposium on Medical Information Processing and Analysis (SIPAIM), and our paper was among the finalists of the best paper award. To be notified of code releases, new data sets, and errata, please watch this repo.

Data set statistics

The data set comprises 450 panoramic images, split into six folds, each containing 75 images. The first five folds were used for cross-validation, while the remaining one constituted the test data set. Therefore, we strongly recommend using fold number 6 (fold-06) as the test data set, so your results can be compared to ours. The annotations are in six JSON files (one for each fold) in the COCO format. We cropped all images to the new 1876x1036 dimensions and converted them to PNG image files. The table below summarizes the data used according to image categories. These categories group the images according to the presence of 32 teeth, restoration, and dental appliances, revealing the high variability of the images. Categories 5 and 6 are reserved for patients with dental implants and more than 32 teeth, respectively. Spoiler: Watch this repo for soon to be published updates.

Category 32 Teeth Restoration Appliance Number and Inst. Segm.
1 ✔️ ✔️ ✔️ 24
2 ✔️ ✔️ 66
3 ✔️ ✔️ 14
4 ✔️ 41
5 Implants 36
6 More than 32 teeth 51
7 ✔️ ✔️ 35
8 ✔️ 136
9 ✔️ 13
10 34
Total 450

Citation

If you use this data set, please cite:

L. Pinheiro, B. Silva, B. Sobrinho, F. Lima, P. Cury, L. Oliveira, “Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays,” in Symposium on Medical Information Processing and Analysis (SIPAIM). SPIE, 2021.

@inproceedings{pinheiro2021numbering,
  title={Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays},
  author={Pinheiro, Laís and Silva, Bernardo and Sobrinho, Brenda and Lima, Fernanda and Cury, Patrícia and Oliveira, Luciano.}
  booktitle={Symposium on Medical Information Processing and Analysis (SIPAIM)},
  year={2021},
  organization={SPIE}
}

Previous Works

This data set and its corresponding paper are a continuation of other works of our group. Please, consider reading and citing:

  • B. Silva, L. Pinheiro, L. Oliveira, and M. Pithon, “A study on tooth segmentation and numbering using end-to-end deep neural networks,” in Conference on Graphics, Patterns and Images. IEEE, 2020.
@inproceedings{silva2020study,
  title={A study on tooth segmentation and numbering using end-to-end deep neural networks},
  author={Silva, Bernardo and Pinheiro, Laís and Oliveira, Luciano and Pithon, Matheus}
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  year={2020},
  organization={IEEE}
}
  • G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep instance segmentation of teeth in panoramic X-ray images,” in Conference on Graphics, Patterns and Images. IEEE, 2018.
@inproceedings{jader2018deep,
  title={Deep instance segmentation of teeth in panoramic X-ray images},
  author={Jader, Gil and Fontineli, Jefferson and Ruiz, Marco and Abdalla, Kalyf and Pithon, Matheus and Oliveira, Luciano},
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  pages={400--407},
  year={2018},
  organization={IEEE}
}
  • G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, Patterns and Images. vol. 107, pp. 15-31, 2018.
@article{silva2018automatic,
  title={Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives},
  author={Silva, Gil and Oliveira, Luciano and Pithon, Matheus},
  journal={Expert Systems with Applications},
  volume={107},
  pages={15--31},
  year={2018},
  publisher={Elsevier}
}

Demonstration

Follow the provided jupyter notebook (demo.ipynb) to get a quick sense of the data set. The conversions.py file defines useful functions to visualize the annotations.

Request the Data Set

Copy the text below in a PDF file, fill out the fields in the text header, and sign it at the end. Please send an e-mail to [email protected] to receive a link to download the DNS Panoramic Images v2 data set with the PDF in attachment. The e-mail must be sent from a professor's valid institutional account:

Subject: Request to download the DNS Panoramic Images v2.

"Name: [your first and last name]

Affiliation: [university where you work]

Department: [your department]

Current position: [your job title]

E-mail: [must be the e-mail at the above-mentioned institution]

I have read and agreed to follow the terms and conditions below: The following conditions define the use of the DNS Panoramic Images v2:

This data set is provided "AS IS" without any express or implied warranty. Although every effort has been made to ensure accuracy, IvisionLab does not take any responsibility for errors or omissions;

Without the expressed permission of IvisionLab, any of the following will be considered illegal: redistribution, modification, and commercial usage of this data set in any way or form, either partially or in its entirety;

All images in this data set are only allowed for demonstration in academic publications and presentations;

This data set will only be used for research purposes. I will not make any part of this data set available to a third party. I'll not sell any part of this data set or make any profit from its use.

[your signature]"

P.S. A link to the data set file will be sent as soon as possible.

Owner
Intelligent Vision Research Lab
Computer Vision and Image Pattern Recognition repository
Intelligent Vision Research Lab
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic Scenes", ICCV 2021.

Deep 3D Mask Volume for View Synthesis of Dynamic Scenes Official PyTorch Implementation of paper "Deep 3D Mask Volume for View Synthesis of Dynamic S

Ken Lin 17 Oct 12, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
A Python Package For System Identification Using NARMAX Models

SysIdentPy is a Python module for System Identification using NARMAX models built on top of numpy and is distributed under the 3-Clause BSD license. N

Wilson Rocha 175 Dec 25, 2022
Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs

Context-Aware-Healthcare Codes for AAAI 2022 paper: Context-aware Health Event Prediction via Transition Functions on Dynamic Disease Graphs Download

LuChang 9 Dec 26, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

STARS Laboratory 8 Sep 14, 2022
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
DeiT: Data-efficient Image Transformers

DeiT: Data-efficient Image Transformers This repository contains PyTorch evaluation code, training code and pretrained models for DeiT (Data-Efficient

Facebook Research 3.2k Jan 06, 2023
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022