Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Overview

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

In this repo, you will find the instructions on how to request the data set used to perform the experiments of the aforementioned paper. We manually annotated from scratch a subset of 450 images from the UFBA-UESC Dental Images Deep data set, which comprises 1500 panoramic dental radiographs. We consider that this new data set evolves a previously published data set: DNS Panoramic Images. Therefore, we refer to this new data set as the DNS Panoramic Images v2, where DNS stands for Detection, Numbering, and Segmentation. We presented our results at the 17th International Symposium on Medical Information Processing and Analysis (SIPAIM), and our paper was among the finalists of the best paper award. To be notified of code releases, new data sets, and errata, please watch this repo.

Data set statistics

The data set comprises 450 panoramic images, split into six folds, each containing 75 images. The first five folds were used for cross-validation, while the remaining one constituted the test data set. Therefore, we strongly recommend using fold number 6 (fold-06) as the test data set, so your results can be compared to ours. The annotations are in six JSON files (one for each fold) in the COCO format. We cropped all images to the new 1876x1036 dimensions and converted them to PNG image files. The table below summarizes the data used according to image categories. These categories group the images according to the presence of 32 teeth, restoration, and dental appliances, revealing the high variability of the images. Categories 5 and 6 are reserved for patients with dental implants and more than 32 teeth, respectively. Spoiler: Watch this repo for soon to be published updates.

Category 32 Teeth Restoration Appliance Number and Inst. Segm.
1 ✔️ ✔️ ✔️ 24
2 ✔️ ✔️ 66
3 ✔️ ✔️ 14
4 ✔️ 41
5 Implants 36
6 More than 32 teeth 51
7 ✔️ ✔️ 35
8 ✔️ 136
9 ✔️ 13
10 34
Total 450

Citation

If you use this data set, please cite:

L. Pinheiro, B. Silva, B. Sobrinho, F. Lima, P. Cury, L. Oliveira, “Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays,” in Symposium on Medical Information Processing and Analysis (SIPAIM). SPIE, 2021.

@inproceedings{pinheiro2021numbering,
  title={Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays},
  author={Pinheiro, Laís and Silva, Bernardo and Sobrinho, Brenda and Lima, Fernanda and Cury, Patrícia and Oliveira, Luciano.}
  booktitle={Symposium on Medical Information Processing and Analysis (SIPAIM)},
  year={2021},
  organization={SPIE}
}

Previous Works

This data set and its corresponding paper are a continuation of other works of our group. Please, consider reading and citing:

  • B. Silva, L. Pinheiro, L. Oliveira, and M. Pithon, “A study on tooth segmentation and numbering using end-to-end deep neural networks,” in Conference on Graphics, Patterns and Images. IEEE, 2020.
@inproceedings{silva2020study,
  title={A study on tooth segmentation and numbering using end-to-end deep neural networks},
  author={Silva, Bernardo and Pinheiro, Laís and Oliveira, Luciano and Pithon, Matheus}
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  year={2020},
  organization={IEEE}
}
  • G. Jader, J. Fontineli, M. Ruiz, K. Abdalla, M. Pithon, and L. Oliveira, “Deep instance segmentation of teeth in panoramic X-ray images,” in Conference on Graphics, Patterns and Images. IEEE, 2018.
@inproceedings{jader2018deep,
  title={Deep instance segmentation of teeth in panoramic X-ray images},
  author={Jader, Gil and Fontineli, Jefferson and Ruiz, Marco and Abdalla, Kalyf and Pithon, Matheus and Oliveira, Luciano},
  booktitle={Conference on Graphics, Patterns and Images (SIBGRAPI)},
  pages={400--407},
  year={2018},
  organization={IEEE}
}
  • G. Silva, L. Oliveira, and M. Pithon, “Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives,” Expert Systems with Applications, Patterns and Images. vol. 107, pp. 15-31, 2018.
@article{silva2018automatic,
  title={Automatic segmenting teeth in X-ray images: Trends, a novel data set, benchmarking and future perspectives},
  author={Silva, Gil and Oliveira, Luciano and Pithon, Matheus},
  journal={Expert Systems with Applications},
  volume={107},
  pages={15--31},
  year={2018},
  publisher={Elsevier}
}

Demonstration

Follow the provided jupyter notebook (demo.ipynb) to get a quick sense of the data set. The conversions.py file defines useful functions to visualize the annotations.

Request the Data Set

Copy the text below in a PDF file, fill out the fields in the text header, and sign it at the end. Please send an e-mail to [email protected] to receive a link to download the DNS Panoramic Images v2 data set with the PDF in attachment. The e-mail must be sent from a professor's valid institutional account:

Subject: Request to download the DNS Panoramic Images v2.

"Name: [your first and last name]

Affiliation: [university where you work]

Department: [your department]

Current position: [your job title]

E-mail: [must be the e-mail at the above-mentioned institution]

I have read and agreed to follow the terms and conditions below: The following conditions define the use of the DNS Panoramic Images v2:

This data set is provided "AS IS" without any express or implied warranty. Although every effort has been made to ensure accuracy, IvisionLab does not take any responsibility for errors or omissions;

Without the expressed permission of IvisionLab, any of the following will be considered illegal: redistribution, modification, and commercial usage of this data set in any way or form, either partially or in its entirety;

All images in this data set are only allowed for demonstration in academic publications and presentations;

This data set will only be used for research purposes. I will not make any part of this data set available to a third party. I'll not sell any part of this data set or make any profit from its use.

[your signature]"

P.S. A link to the data set file will be sent as soon as possible.

Owner
Intelligent Vision Research Lab
Computer Vision and Image Pattern Recognition repository
Intelligent Vision Research Lab
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Official code for the ICLR 2021 paper Neural ODE Processes

Neural ODE Processes Official code for the paper Neural ODE Processes (ICLR 2021). Abstract Neural Ordinary Differential Equations (NODEs) use a neura

Cristian Bodnar 50 Oct 28, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | 中文 Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

A repo to show how to use custom dataset to train s2anet, and change backbone to resnext101

jedibobo 3 Dec 28, 2022
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
STARCH compuets regional extreme storm physical characteristics and moisture balance based on spatiotemporal precipitation data from reanalysis or climate model data.

STARCH (Storm Tracking And Regional CHaracterization) STARCH computes regional extreme storm physical and moisture balance characteristics based on sp

Onosama 7 Oct 20, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
Official implementation of Monocular Quasi-Dense 3D Object Tracking

Monocular Quasi-Dense 3D Object Tracking Monocular Quasi-Dense 3D Object Tracking (QD-3DT) is an online framework detects and tracks objects in 3D usi

Visual Intelligence and Systems Group 441 Dec 20, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022