A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Overview

Fully Distributed CIDACS-RL

The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However, its current implementation relies on a ElasticSearch Cluster to distribute the queries and a single node to perform them through Python Multiprocessing lib. This implementation of CIDACS-RL tool can be deployed in a Spark Cluster using all resources available by Jupyter Kernel still using the ElasticSearch cluster, becaming a fully distributed and cluster based solution. It can outperform the legacy version of CIDACS-RL either on multi-node or single node Spark Environment.

config.json

Almost all the aspects of the linkage can be manipulated by the config.json file.

Section Sub-section Field (datatype) Field description
General info index_data (str<'yes', 'no'>) This flag says if the linkage process includes the indexing of a data set into elastic search. Constraints: string, it can assume the values "yes" or "no".
General info es_index_name (str<ES_VALID_INDEX>) The name of an existing elasticsearch index (if index_data is 'no') or a new one (if index_data is 'yes'). Constraints: string, elasticsearch valid.
General info es_connect_string (str<ES_URL:ES_PORT>) Elasticsearch API address. Constraints: string, URL format.
General info query_size (int) Number of candidates output for each Elasticsearch query. Constraints: int.
General info cutoff_exact_match (str<0:1 number>) Cutoff point to determine wether a pair is an exact match or not. Constraints: str, number between 0 and 1.
General info null_value (str) Value to replace missings on both data sets involved. Constraints: string.
General info temp_dir (str) Directory used to write checkpoints for exact match and non-exact match phases. Constraints: string, fully qualified path.
General info debug (str<'true', 'false'>) If it is set as "true", all records found on exact match will be queried again on non-exact match phase.
Datasets info Indexed dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info Indexed dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info Indexed dataset columns (list) Python list with column names involved on linkage.
Datasets info Indexed dataset id_column_name (str) Name of id column.
Datasets info Indexed dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info Indexed dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info tolink dataset path (str) Path for csv or parquet folder of dataset to index.
Datasets info tolink dataset extension (str<'csv', 'parquet'>) String to determine the type of data reading on Spark.
Datasets info tolink dataset columns (list) Python list with column names involved on linkage.
Datasets info tolink dataset id_column_name (str) Name of id column.
Datasets info tolink dataset storage_level (str<'MEMORY_AND_DISK', 'MEMORY_ONLY'>) Directive for memory allocation on Spark.
Datasets info tolink dataset default_paralelism (str<4*N_OF_AVAILABLE_CORES>) Number of partitions of a given Spark dataframe.
Datasets info result dataset path (str) Path for csv or parquet folder of dataset to index.
Comparisons label1 indexed_col (str) Name of first column to be compared on indexed dataset
Comparisons label1 tolink_col (str) Name of first column to be compared on tolink dataset
Comparisons label1 must_match (str<'true', 'false'>) Set if this pair of columns are included on exact match phase
Comparisons label1 should_match (str<'true', 'false'>) Set if this pair of columns are included on non-exact match phase
Comparisons label1 is_fuzzy (str<'true', 'false'>) Set if this pair of columns are included on fuzzy queries for non-exact match phase
Comparisons label1 boost (str) Set the boost/weight of this pair of columns on queries
Comparisons label1 query_type (str<'match', 'term'>) Set the type of matching for this pair of columns on non-exact match phase
Comparisons label1 similarity (str<'jaro_winkler', 'overlap', 'hamming'> Set the similarity to be calculated between the values of this pair of columns
Comparisons label1 weight (str) Set the weight of this pair of columns.
Comparisons label1 penalty (str) Set the penalty of the overall similarity in case of missing value(s).
Comparisons label2 ... ...

config.json example


{
 'index_data': 'no',
 'es_index_name': 'fd-cidacs-rl',
 'es_connect_string': 'http://localhost:9200',
 'query_size': 100,
 'cutoff_exact_match': '0.95',
 'null_value': '99',
 'temp_dir': '../../../0_global_data/fd-cidacs-rl/temp_dataframe/',
 'debug': 'false',
 
 'datasets_info': {
    'indexed_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-dataset-A.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_a', 'nome_a', 'nome_mae_a', 'dt_nasc_a', 'sexo_a'],
        'id_column_name': 'id_cidacs_a',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'tolink_dataset': {
        'path': '../../../0_global_data/fd-cidacs-rl/sinthetic-datasets-b/sinthetic-datasets-b-500000.parquet',
        'extension': 'parquet',
        'columns': ['id_cidacs_b', 'nome_b', 'nome_mae_b', 'dt_nasc_b', 'sexo_b'],
        'id_column_name': 'id_cidacs_b',
        'storage_level': 'MEMORY_ONLY',
        'default_paralelism': '16'},
    'result_dataset': {
        'path': '../0_global_data/result/500000/'}},
        
 'comparisons': {
    'name': {
        'indexed_col': 'nome_a',
        'tolink_col': 'nome_b',
        'must_match': 'true',
        'should_match': 'true',
        'is_fuzzy': 'true',
        'boost': '3.0',
        'query_type': 'match',
        'similarity': 'jaro_winkler',
        'weight': 5.0,
        'penalty': 0.02},
    'mothers_name': {
       'indexed_col': 'nome_mae_a',
       'tolink_col': 'nome_mae_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'true',
       'boost': '2.0',
       'query_type': 'match',
       'similarity': 'jaro_winkler',
       'weight': 5.0,
       'penalty': 0.02},
  'birthdate': {
       'indexed_col': 'dt_nasc_a',
       'tolink_col': 'dt_nasc_b',
       'must_match': 'false',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'hamming',
       'weight': 1.0,
       'penalty': 0.02},
  'sex': {
       'indexed_col': 'sexo_a',
       'tolink_col': 'sexo_b',
       'must_match': 'true',
       'should_match': 'true',
       'is_fuzzy': 'false',
       'boost': '',
       'query_type': 'term',
       'similarity': 'overlap',
       'weight': 3.0,
       'penalty': 0.02}}}

Running in a Standalone Spark Cluster

Read more: https://github.com/elastic/elasticsearch-hadoop https://www.elastic.co/guide/en/elasticsearch/hadoop/current/spark.html https://search.maven.org/artifact/org.elasticsearch/elasticsearch-spark-30_2.12 If you intend to run this tool into a single node Spark environment, consider to include this in you spark-submit or spark-shell command line


pyspark --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes="localhost" --conf spark.es.port="9200"

If you are running into a Spark Cluster under JupyterHUB kernels, try to add this kernel or edit an existing one:


{
	 "display_name": "Spark3.3",
	  "language": "python",
	   "argv": [
		     "/opt/bigdata/anaconda3/bin/python",
		       "-m",
		         "ipykernel",
			   "-f",
			     "{connection_file}"
			      ],
			       "env": {
				         "SPARK_HOME": "/opt/bigdata/spark",
					   "PYTHONPATH": "/opt/bigdata/spark/python:/opt/bigdata/spark/python/lib/py4j-0.10.9.2-src.zip",
					     "PYTHONSTARTUP": "/opt/bigdata/spark/python/pyspark/python/pyspark/shell.py",
					       "PYSPARK_PYTHON": "/opt/bigdata/anaconda3/bin/python",
					         "PYSPARK_SUBMIT_ARGS": "--master spark://node1.sparkcluster:7077 --packages org.elasticsearch:elasticsearch-spark-30_2.12:7.14.0 --conf spark.es.nodes=['node1','node2'] --conf spark.es.port='9200' pyspark-shell"
						  }
}

Some advices for indexed data and queries

  • Every col should be casted as string (df.withColumn('column', F.col('column').cast(string')))
  • Date type columns will not be proper indexed as string, except if some preprocessing step tranform it from yyyy-MM-dd to yyyyMMdd.
  • All the nodes of elasticsearch cluster must be included on --packages configuration.
  • Term queries are good to well structured variables, such as CPF, dates, CNPJ, etc.
Owner
Robespierre Pita
AI Researcher
Robespierre Pita
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
The PyTorch improved version of TPAMI 2017 paper: Face Alignment in Full Pose Range: A 3D Total Solution.

Face Alignment in Full Pose Range: A 3D Total Solution By Jianzhu Guo. [Updates] 2020.8.30: The pre-trained model and code of ECCV-20 are made public

Jianzhu Guo 3.4k Jan 02, 2023
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
MACE is a deep learning inference framework optimized for mobile heterogeneous computing platforms.

Documentation | FAQ | Release Notes | Roadmap | MACE Model Zoo | Demo | Join Us | 中文 Mobile AI Compute Engine (or MACE for short) is a deep learning i

Xiaomi 4.7k Dec 29, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
Implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

PRP Introduction This is the implementation of our paper "Video Playback Rate Perception for Self-supervised Spatio-Temporal Representation Learning".

yuanyao366 39 Dec 29, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Melon(Xuguang Duan) 96 Nov 01, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022