Greedy Gaussian Segmentation

Related tags

Deep LearningGGS
Overview

GGS

Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please see our paper at http://stanford.edu/~boyd/papers/ggs.html.


The GGS Solver takes an n-by-T data matrix and breaks the T timestamps on an n-dimensional vector into segments over which the data is well explained as independent samples from a multivariate Gaussian distribution. It does so by formulating a covariance-regularized maximum likelihood problem and solving it using a greedy heuristic, with full details described in the paper.

Download & Setup

  1. Download the source code in the terminal by running:
git clone [email protected]:davidhallac/GGS.git
  1. Confirm that the code was properly downloaded by running:
cd GGS
python helloworld.py
  1. To write your own Python function that uses ggs, simply make sure that ggs.py is in the same directory as your new file, and then add the following code to the beginning of your script:
from ggs import *

Supported Functions

The GGS package has three main functions:

bps, objectives = GGS(data, Kmax, lamb)

Finds K breakpoints in the data for a given regularization parameter lambda

Inputs

data - a n-by-T data matrix, with T timestamps of an n-dimensional vector

Kmax - the number of breakpoints to find

lamb - regularization parameter for the regularized covariance

Returns

bps - List of lists, where element i of the larger list is the set of breakpoints found at K = i in the GGS algorithm

objectives - List of the objective values at each intermediate step (for K = 0 to Kmax)


meancovs = GGSMeanCov(data, breakpoints, lamb)

Finds the means and regularized covariances of each segment, given a set of breakpoints.

Inputs

data - a n-by-T data matrix, with T timestamps of an n-dimensional vector

breakpoints - a list of breakpoint locations

lamb - regularization parameter for the regularized covariance

Returns

meancovs - a list of (mean, covariance) tuples for each segment in the data


cvResults = GGSCrossVal(data, Kmax=25, lambList = [0.1, 1, 10])

Runs 10-fold cross validation, and returns the train and test set likelihood for every (K, lambda) pair up to Kmax

Inputs

data - a n-by-T data matrix, with T timestamps of an n-dimensional vector

Kmax - the maximum number of breakpoints to run GGS on

lambList - a list of regularization parameters to test

Returns

cvResults - list of (lamb, ([TrainLL],[TestLL])) tuples for each regularization parameter in lambList. Here, TrainLL and TestLL are the average per-sample log-likelihood across the 10 folds of cross-validation for all K's from 0 to Kmax


Additional optional parameters (for all three functions above):

features = [] - select a certain subset of columns in the data to operate on

verbose = False - Print intermediate steps when running the algorithm

Example Usage

Running financeExample.py will yield the following plot, showing the objective (Equation 4 in the paper) vs. the number of breakpoints:

Objective vs. # of breakpoints

Once we have solved for the locations of the breakpoints, we can use the FindMeanCovs() function to find the means and covariances of each segment. In the example in helloworld.py, plotting the means, variances, and covariances of the three signals yields:

Means and covariances over time

To run cross-validation, which can be useful in determining optimal values of K and lambda, we can use the following code to load the data, run the cross-validation, and then plot the test and train likelihood:

from ggs import *
import numpy as np
import matplotlib.pyplot as plt

filename = "Returns.txt"
data = np.genfromtxt(filename,delimiter=' ')
feats = [0,3,7]

#Run cross-validaton up to Kmax = 30, at lambda = 1e-4
maxBreaks = 30
lls = GGSCrossVal(data, Kmax=maxBreaks, lambList = [1e-4], features = feats, verbose = False)

trainLikelihood = lls[0][1][0]
testLikelihood = lls[0][1][1]
plt.plot(range(maxBreaks+1), testLikelihood)
plt.plot(range(maxBreaks+1), trainLikelihood)
plt.legend(['Test LL','Train LL'], loc='best')
plt.show()

The resulting plot looks like:

Test and train likelihood

References

Greedy Gaussian Segmentation of Time Series Data -- D. Hallac, P. Nystrup, and S. Boyd

Authors

David Hallac, Peter Nystrup, and Stephen Boyd.

Owner
Stanford University Convex Optimization Group
Stanford University Convex Optimization Group
Federated Learning - Including common test models for federated learning, like CNN, Resnet18 and lstm, controlled by different parser

Federated_Learning 💻 This projest include common test models for federated lear

TianyuQi 10 Dec 11, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes This repository contains the official PyTorch implementatio

Junyong Lee 98 Nov 06, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
Ian Covert 130 Jan 01, 2023
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Spatial Single-Cell Analysis Toolkit

Single-Cell Image Analysis Package Scimap is a scalable toolkit for analyzing spatial molecular data. The underlying framework is generalizable to spa

Laboratory of Systems Pharmacology @ Harvard 30 Nov 08, 2022
PECOS - Prediction for Enormous and Correlated Spaces

PECOS - Predictions for Enormous and Correlated Output Spaces PECOS is a versatile and modular machine learning (ML) framework for fast learning and i

Amazon 387 Jan 04, 2023
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Graph Convolutional Networks for Hyperspectral Image Classification, IEEE TGRS, 2021.

Graph Convolutional Networks for Hyperspectral Image Classification Danfeng Hong, Lianru Gao, Jing Yao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot T

Danfeng Hong 154 Dec 13, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Predict the latency time of the deep learning models

Deep Neural Network Prediction Step 1. Genernate random parameters and Run them sequentially : $ python3 collect_data.py -gp -ep -pp -pl pooling -num

QAQ 1 Nov 12, 2021
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Re-TACRED Re-TACRED: Addressing Shortcomings of the TACRED Dataset

George Stoica 40 Dec 10, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022