Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Related tags

Deep LearningCRT
Overview

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022)

All scripts were written and edited by Dae Woong Ham on 01/27/2022

Code Overview

Plotting previous empirical results (Fig 1, Fig 2)

  • "Section2_AMCE_plots/immigration_Fig1.R" produces Figure 1 AMCE plots based on original AMCE estimates
  • "Section2_AMCE_plots/gender_Fig2.R" produces Figure 2 AMCE plots based on original AMCE estimates

All simulation plots (Fig 3, 4, 5, 6, 7)

  • All simulations are plotted through "Simulations/all_simulation_plots.R" file
  • All simulation scripts are executed through "source/left_fig_simulation.sh" or "source/right_fig_simulation.sh"
  • "Simulations/Section4/Figure3_leftplot.R"/"Simulations/Section4/Figure3_rightplot.R" produces results of Fig 3 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure4_and_6_leftplot.R"/"Simulations/Section4/Figure4_and_6_rightplot.R" produces results of Fig 4 and 6 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure5_leftplot.R"/"Simulations/Section4/Figure5_rightplot.R" produces results of Fig 5 # 50 and 33 hours of computing time respectively
  • "Simulations/Appendix/Figure7.R" produces results of Fig 7 # less than 5 minutes of computing time on FAS computing cluster

Obtaining new p-values (Section 5 and Table 1)

  • All p-values in Section 5 are summarized and obtained in "Section5_ApplicationResults/pval_analysis.R"
  • "Section5_ApplicationResults/Immigration/main_analysis/obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 1. # 30 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/AMCE_pval.do" produces AMCE p-value in Table 1 row 1 column 2. #less than 5 seconds of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/profile_order_effect.R"/"Section5_ApplicationResults/Immigration/main_analysis/profile_order_effect/resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 3. # 10 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/carryover_effect_obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/carryover_effect_resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 4. # 30 minutes of total computing time
  • "Section5_ApplicationResults/Immigration/main_analysis/fatigue_effect_obs_test_stat.R"/"Section5_ApplicationResults/Immigration/main_analysis/fatigue_effect_resampled_test_stats.R" produces observed and resampled test statistics to produce p-value in Table 1 row 1 column 5. # 24 minutes of computing time
  • To obtain p-value for second row repeat above but for "Section5_ApplicationResults/Gender/..." # Approximate computation time is listed in the individual files
  • Each application also contains "../lasso_obs_test_stat.R"/"../lasso_resampled_test_stats.R" to produce supplementary main effect analysis in Section 5
  • "Section5_ApplicationResults/Immigration/with_ethnocentrism/" contains files to produce p-value when including ethnocentrism in Section 5.1
  • "Section5_ApplicationResults/gender/supplementary_analysis/" contains files to produce p-value when performing robustness analysis using second most significant interaction in Appendix
  • "Section5_ApplicationResults/gender/main_analysis/presidential_lasso_explore.R" contains script to find which interaction is strongest in Presidential dataset

Other folders

  • "data" folder contains all relevant datasets in both Immigration and gender conjoint examples and all the saved results of p-values in simulations and test statistics for Section 5
  • "Figures" folder contains all figures
  • "source" folder contains all helper and main functions to run above scripts (including data cleaning, obtaining test statistics, generating simulation datasets). In particular "source/hiernet_source.R" contains the main function to compute all HierNet test statistics in the paper.

Environment

  • R version 4.1.0
  • 200 cores for all scripts that required parallel computing
  • All parallel computations in this paper were run on the FASRC Cannon cluster supported by the FAS Division of Science Research Computing Group at Harvard University
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
A configurable, tunable, and reproducible library for CTR prediction

FuxiCTR This repo is the community dev version of the official release at huawei-noah/benchmark/FuxiCTR. Click-through rate (CTR) prediction is an cri

XUEPAI 397 Dec 30, 2022
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

White Laboratory 172 Dec 19, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK

Pytorch-MBNet A pytorch implementation of MBNET: MOS PREDICTION FOR SYNTHESIZED SPEECH WITH MEAN-BIAS NETWORK Training To train a new model, please ru

46 Dec 28, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec

Personal thermal comfort models using digital twins: Preference prediction with BIM-extracted spatial-temporal proximity data from Build2Vec This repo

Building and Urban Data Science (BUDS) Group 5 Dec 02, 2022
Rohit Ingole 2 Mar 24, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
GAN-based 3D human pose estimation model for 3DV'17 paper

Tensorflow implementation for 3DV 2017 conference paper "Adversarially Parameterized Optimization for 3D Human Pose Estimation". @inproceedings{jack20

Dominic Jack 15 Feb 27, 2021
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022