An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Related tags

Deep LearningULTRA
Overview
logo

Unbiased Learning to Rank Algorithms (ULTRA)

Python 3.6 Documentation Status Build Status codecov License follow on Twitter

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels. With the unified data processing pipeline, ULTRA supports multiple unbiased learning-to-rank algorithms, online learning-to-rank algorithms, neural learning-to-rank models, as well as different methods to use and simulate noisy labels (e.g., clicks) to train and test different algorithms/ranking models. A user-friendly documentation can be found here.

Get Started

Create virtual environment (optional):

pip install --user virtualenv
~/.local/bin/virtualenv -p python3 ./venv
source venv/bin/activate

Install ULTRA from the source:

git clone https://github.com/ULTR-Community/ULTRA.git
cd ULTRA
make init # Replace 'tensorflow' with 'tensorflow-gpu' in requirements.txt for GPU support

Run toy example:

bash example/toy/offline_exp_pipeline.sh

Structure

structure

Input Layers

  1. ClickSimulationFeed: this is the input layer that generate synthetic clicks on fixed ranked lists to feed the learning algorithm.

  2. DeterministicOnlineSimulationFeed: this is the input layer that first create ranked lists by sorting documents according to the current ranking model, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  3. StochasticOnlineSimulationFeed: this is the input layer that first create ranked lists by sampling documents based on their scores in the current ranking model and the Plackett-Luce distribution, and then generate synthetic clicks on the lists to feed the learning algorithm. It can do result interleaving if required by the learning algorithm.

  4. DirectLabelFeed: this is the input layer that directly feed the true relevance labels of each documents to the learning algorithm.

  5. [MTLSimulationFeed] (https://github.com/phyllist/ULTRA/blob/master/ultra/input_layer/mtl_simulation_feed.py): this is the input layer that generate synthetic click and dwell-time on fixed ranked lists to feed the learning algorithm.

Learning Algorithms

  1. NA: this model is an implementation of the naive algorithm that directly train models with input labels (e.g., clicks).

  2. DLA: this is an implementation of the Dual Learning Algorithm in Unbiased Learning to Rank with Unbiased Propensity Estimation.

  3. IPW: this model is an implementation of the Inverse Propensity Weighting algorithms in Learning to Rank with Selection Bias in Personal Search and Unbiased Learning-to-Rank with Biased Feedback

  4. REM: this model is an implementation of the regression-based EM algorithm in Position bias estimation for unbiased learning to rank in personal search

  5. PD: this model is an implementation of the pairwise debiasing algorithm in Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm.

  6. DBGD: this model is an implementation of the Dual Bandit Gradient Descent algorithm in Interactively optimizing information retrieval systems as a dueling bandits problem

  7. MGD: this model is an implementation of the Multileave Gradient Descent in Multileave Gradient Descent for Fast Online Learning to Rank

  8. NSGD: this model is an implementation of the Null Space Gradient Descent algorithm in Efficient Exploration of Gradient Space for Online Learning to Rank

  9. PDGD: this model is an implementation of the Pairwise Differentiable Gradient Descent algorithm in Differentiable unbiased online learning to rank

  10. PAIRREGM: this model is an implementation of the pairwise regression-based EM algorithm of our paper "Unbiased Pairwise Learning to Rank in Recommender Systems".

Ranking Models

  1. Linear: this is a linear ranking algorithm that compute ranking scores with a linear function.

  2. DNN: this is neural ranking algorithm that compute ranking scores with a multi-layer perceptron network (with non-linear activation functions).

  3. DLCM: this is an implementation of the Deep Listwise Context Model in Learning a Deep Listwise Context Model for Ranking Refinement.

  4. GSF: this is an implementation of the Groupwise Scoring Function in Learning Groupwise Multivariate Scoring Functions Using Deep Neural Networks.

  5. SetRank: this is an implementation of the SetRank model in SetRank: Learning a Permutation-Invariant Ranking Model for Information Retrieval.

  6. [BiasTowerDNN] (https://github.com/phyllist/ULTRA/blob/master/ultra/ranking_model/BiasTowerDNN.py): this is an implementation of the shallow tower based DNN model

Supported Evaluation Metrics

  1. MRR: the Mean Reciprocal Rank (inherited from TF-Ranking).

  2. ERR: the Expected Reciprocal Rank from Expected reciprocal rank for graded relevance.

  3. ARP: the Average Relevance Position (inherited from TF-Ranking).

  4. NDCG: the Normalized Discounted Cumulative Gain (inherited from TF-Ranking).

  5. DCG: the Discounted Cumulative Gain (inherited from TF-Ranking).

  6. Precision: the Precision (inherited from TF-Ranking).

  7. MAP: the Mean Average Precision (inherited from TF-Ranking).

  8. Ordered_Pair_Accuracy: the percentage of correctedly ordered pair (inherited from TF-Ranking).

Click Simulation Example

Create click models for click simulations

python ultra/utils/click_models.py pbm 0.1 1 4 1.0 example/ClickModel

* The output is a json file containing the click mode that could be used for click simulation. More details could be found in the code.

(Optional) Estimate examination propensity with result randomization

python ultra/utils/propensity_estimator.py example/ClickModel/pbm_0.1_1.0_4_1.0.json 
   
     example/PropensityEstimator/

   

* The output is a json file containing the estimated examination propensity (used for IPW). DATA_DIR is the directory for the prepared data created by ./libsvm_tools/prepare_exp_data_with_svmrank.py. More details could be found in the code.

Citation

If you use ULTRA in your research, please use the following BibTex entry.

@article{10.1145/3439861,
author = {Ai, Qingyao and Yang, Tao and Wang, Huazheng and Mao, Jiaxin},
title = {Unbiased Learning to Rank: Online or Offline?},
year = {2021},
issue_date = {February 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {39},
number = {2},
issn = {1046-8188},
url = {https://doi.org/10.1145/3439861},
doi = {10.1145/3439861},
journal = {ACM Trans. Inf. Syst.},
month = feb,
articleno = {21},
numpages = {29},
keywords = {unbiased learning, online learning, Learning to rank}
}

@inproceedings{Ai:2018:ULR:3269206.3274274,
 author = {Ai, Qingyao and Mao, Jiaxin and Liu, Yiqun and Croft, W. Bruce},
 title = {Unbiased Learning to Rank: Theory and Practice},
 booktitle = {Proceedings of the 27th ACM International Conference on Information and Knowledge Management},
 series = {CIKM '18},
 year = {2018},
 isbn = {978-1-4503-6014-2},
 location = {Torino, Italy},
 pages = {2305--2306},
 numpages = {2},
 url = {http://doi.acm.org/10.1145/3269206.3274274},
 doi = {10.1145/3269206.3274274},
 acmid = {3274274},
 publisher = {ACM},
 address = {New York, NY, USA},
 keywords = {click model, counterfactual learning, unbiased learning to rank, user bias},
}

Development Team

​ ​ ​ ​

QingyaoAi
Qingyao Ai

Core Dev
ASST PROF, Univ. of Utah

Taosheng-ty
Tao Yang

Core Dev
Ph.D., Univ. of Utah

huazhengwang
Huazheng Wang

Core Dev
Ph.D., Univ. of Virginia

defaultstr
Jiaxin Mao

Core Dev
Postdoc, Tsinghua Univ.

Contribution

Please read the Contributing Guide before creating a pull request.

Project Organizers

  • Qingyao Ai
    • School of Computing, University of Utah
    • Homepage

License

Apache-2.0

Copyright (c) 2020-present, Qingyao Ai (QingyaoAi)

[PAMI 2020] Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation

Show, Match and Segment: Joint Weakly Supervised Learning of Semantic Matching and Object Co-segmentation This repository contains the source code for

Yun-Chun Chen 60 Nov 25, 2022
Source code and Dataset creation for the paper "Neural Symbolic Regression That Scales"

NeuralSymbolicRegressionThatScales Pytorch implementation and pretrained models for the paper "Neural Symbolic Regression That Scales", presented at I

35 Nov 25, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Show-attend-and-tell - TensorFlow Implementation of "Show, Attend and Tell"

Show, Attend and Tell Update (December 2, 2016) TensorFlow implementation of Show, Attend and Tell: Neural Image Caption Generation with Visual Attent

Yunjey Choi 902 Nov 29, 2022
Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

JAX: Autograd and XLA Quickstart | Transformations | Install guide | Neural net libraries | Change logs | Reference docs | Code search News: JAX tops

Google 21.3k Jan 01, 2023
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
List of all dependencies affected by node-ipc malicious commit

node-ipc-dependencies-list List of all dependencies affected by node-ipc malicious commit as of 17/3/2022 - 19/3/2022 (timestamp) Please improve upon

99 Oct 15, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Daft-Exprt - PyTorch Implementation PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis The

Keon Lee 47 Dec 18, 2022
Point-NeRF: Point-based Neural Radiance Fields

Point-NeRF: Point-based Neural Radiance Fields Project Sites | Paper | Primary c

Qiangeng Xu 662 Jan 01, 2023
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Codes for NAACL 2021 Paper "Unsupervised Multi-hop Question Answering by Question Generation"

Unsupervised-Multi-hop-QA This repository contains code and models for the paper: Unsupervised Multi-hop Question Answering by Question Generation (NA

Liangming Pan 70 Nov 27, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
MoViNets PyTorch implementation: Mobile Video Networks for Efficient Video Recognition;

MoViNet-pytorch Pytorch unofficial implementation of MoViNets: Mobile Video Networks for Efficient Video Recognition. Authors: Dan Kondratyuk, Liangzh

189 Dec 20, 2022
tmm_fast is a lightweight package to speed up optical planar multilayer thin-film device computation.

tmm_fast tmm_fast or transfer-matrix-method_fast is a lightweight package to speed up optical planar multilayer thin-film device computation. It is es

26 Dec 11, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022