基于Paddle框架的arcface复现

Overview

arcface-Paddle

基于Paddle框架的arcface复现

ArcFace-Paddle

本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待

参考项目:

InsightFace

Paddle版本:

paddlepaddle-gpu==2.0.2

数据集

MS1M-ArcFace 解压数据集,你应该得到以下目录结构

faces_more
|───property
└───cplfw.bin
└───agedb_30.bin
└───vgg2_fp.bin
└───lfw.bin
└───cfp_ff.bin
└───cfp_fp.bin
└───calfw.bin
└───train.rec
└───train.idx

其中train.rec包含训练的图像,train.idx包含训练的标签,其均为mxnet数据格式,其余.bin文件均为二进制bytes文件

训练

整个工程文件具有以下目录结构

|───faces_more
└───eval
└───mxnet_reader
└───mxnet_reader_win10
└───backbones
└───paddle_pretrainedmodel
└───utils
└───dataset.py
└───losses.py
└───partial_fc.py
└───config.py
└───train.py

注意:mxnet_reader用于Linux系统部署训练,mxnet_reader_win10用于win10系统部署训练,两者均为重构mxnet数据读取后的代码

配置说明

config.py里面包含训练的超参数,学习率衰减函数,训练文件路径以及验证文件列表

backbones里面包含提供的训练模型,iresnet18iresnet34iresnet50iresnet100iresnet200

partial_fc来源于论文《Partial FC: Training 10 Million Identities on a Single Machine》,其目的是加速训练超大规模数据集

paddle_pretrainedmodel包含网络的预训练文件,其均为由torch模型转换而来,里面包含测试代码model_test.py以及精度文件results.txt

启动训练

python train.py [--network XXX]

这将会在log文件夹下产生训练的日志文件,其包括损失值以及所需训练的的时间,工程中的training.log包含了部分训练过程中的打印信息

训练过程中的权重文件将保存在emore_arcface_r50文件夹下,保存路径源于你的config文件设置,你应具有以下类似目录

|───emore_arcface_r50
└───backbone.pdparams
└───rank:0_softmax_weight.pkl
└───rank:0_softmax_weight_mom.pkl

本次利用aistudio训练的iresnet50得到的backbone.pdparams精度如下,其中lfw=0.99750cplfw=0.92117calfw=0.96017,你可以通过修改/home/aistudio/paddle_pretrainedmodel/ model_test.py权重路径model_params=/home/aistudio/emore_arcface_r50/backbone.pdparams来测试自己的模型

由于aistudio对保存版本文件的限制,我将保存的文件已上传至我的服务器,你可以通过wget ftp://207.246.98.85/emore_arcface_r50.zip下载获取

启动测试

模型和数据集读取代码下载

提取码:dzc0

AIStudio链接

cd /home/aistudio/paddle_pretrainedmodel
python model_test.py [--network XXX]

注意到model_test.py测试的官方提供的预训练模型,测试自己的训练模型,你需要修改读取文件的路径以及网络结构

关于作者

姓名 郭权浩
学校 电子科技大学研2020级
研究方向 计算机视觉
主页 Deep Hao的主页
如有错误,请及时留言纠正,非常蟹蟹!
后续会有更多论文复现系列推出,欢迎大家有问题留言交流学习,共同进步成长!
Owner
QuanHao Guo
master at UESTC
QuanHao Guo
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data.

Deep Learning Dataset Maker Deep Learning Datasets Maker is a QGIS plugin to make datasets creation easier for raster and vector data. How to use Down

deepbands 25 Dec 15, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

KSAI Lite is a deep learning inference framework of kingsoft, based on tensorflow lite

80 Dec 27, 2022
Codes for "Template-free Prompt Tuning for Few-shot NER".

EntLM The source codes for EntLM. Dependencies: Cuda 10.1, python 3.6.5 To install the required packages by following commands: $ pip3 install -r requ

77 Dec 27, 2022
Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

FL Analysis This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First L

3 Oct 17, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Learn about Spice.ai with in-depth samples

Samples Learn about Spice.ai with in-depth samples ServerOps - Learn when to run server maintainance during periods of low load Gardener - Intelligent

Spice.ai 16 Mar 23, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Ppq - A powerful offline neural network quantization tool with custimized IR

PPL Quantization Tool(PPL 量化工具) PPL Quantization Tool (PPQ) is a powerful offlin

605 Jan 03, 2023