PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Overview

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv

This is a PyTorch implementation of our paper.

1. Requirements

torch>=1.7.0; torchvision>=0.8.0; Visdom(optional)

data prepare: Database with the following folder structure:

│NTURGBD/
├──dataset_splits/
│  ├── @CS
│  │   ├── train.txt
                video name               total frames    label
│  │   │    ├──S001C001P001R001A001_rgb      103          0 
│  │   │    ├──S001C001P001R001A004_rgb      99           3 
│  │   │    ├──...... 
│  │   ├── valid.txt
│  ├── @CV
│  │   ├── train.txt
│  │   ├── valid.txt
├──Images/
│  │   ├── S001C002P001R001A002_rgb
│  │   │   ├──000000.jpg
│  │   │   ├──000001.jpg
│  │   │   ├──......
├──nturgb+d_depth_masked/
│  │   ├── S001C002P001R001A002
│  │   │   ├──MDepth-00000000.png
│  │   │   ├──MDepth-00000001.png
│  │   │   ├──......

It is important to note that due to the RGB video resolution in the NTU dataset is relatively high, so we are not directly to resize the image from the original resolution to 320x240, but first crop the object-centered ROI area (640x480), and then resize it to 320x240 for training and testing.

2. Methodology

We propose to decouple and recouple spatiotemporal representation for RGB-D-based motion recognition. The Figure in the first line illustrates the proposed multi-modal spatiotemporal representation learning framework. The RGB-D-based motion recognition can be described as spatiotemporal information decoupling modeling, compact representation recoupling learning, and cross-modal representation interactive learning. The Figure in the second line shows the process of decoupling and recoupling saptiotemporal representation of a unimodal data.

3. Train and Evaluate

All of our models are pre-trained on the 20BN Jester V1 dataset and the pretrained model can be download here. Before cross-modal representation interactive learning, we first separately perform unimodal representation learning on RGB and depth data modalities.

Unimodal Training

Take training an RGB model with 8 GPUs on the NTU-RGBD dataset as an example, some basic configuration:

common:
  dataset: NTU 
  batch_size: 6
  test_batch_size: 6
  num_workers: 6
  learning_rate: 0.01
  learning_rate_min: 0.00001
  momentum: 0.9
  weight_decay: 0.0003
  init_epochs: 0
  epochs: 100
  optim: SGD
  scheduler:
    name: cosin                     # Represent decayed learning rate with the cosine schedule
    warm_up_epochs: 3 
  loss:
    name: CE                        # cross entropy loss function
    labelsmooth: True
  MultiLoss: True                   # Enable multi-loss training strategy.
  loss_lamdb: [ 1, 0.5, 0.5, 0.5 ]  # The loss weight coefficient assigned for each sub-branch.
  distill: 1.                       # The loss weight coefficient assigned for distillation task.

model:
  Network: I3DWTrans                # I3DWTrans represent unimodal training, set FusionNet for multi-modal fusion training.
  sample_duration: 64               # Sampled frames in a video.
  sample_size: 224                  # The image is croped into 224x224.
  grad_clip: 5.
  SYNC_BN: 1                        # Utilize SyncBatchNorm.
  w: 10                             # Sliding window size.
  temper: 0.5                       # Distillation temperature setting.
  recoupling: True                  # Enable recoupling strategy during training.
  knn_attention: 0.7                # Hyperparameter used in k-NN attention: selecting Top-70% tokens.
  sharpness: True                   # Enable sharpness for each sub-branch's output.
  temp: [ 0.04, 0.07 ]              # Temperature parameter follows a cosine schedule from 0.04 to 0.07 during the training.
  frp: True                         # Enable FRP module.
  SEHeads: 1                        # Number of heads used in RCM module.
  N: 6                              # Number of Transformer blochs configured for each sub-branch.

dataset:
  type: M                           # M: RGB modality, K: Depth modality.
  flip: 0.5                         # Horizontal flip.
  rotated: 0.5                      # Horizontal rotation
  angle: (-10, 10)                  # Rotation angle
  Blur: False                       # Enable random blur operation for each video frame.
  resize: (320, 240)                # The input is spatially resized to 320x240 for NTU dataset.
  crop_size: 224                
  low_frames: 16                    # Number of frames sampled for small Transformer.       
  media_frames: 32                  # Number of frames sampled for medium Transformer.  
  high_frames: 48                   # Number of frames sampled for large Transformer.
bash run.sh tools/train.py config/NTU.yml 0,1,2,3,4,5,6,7 8

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 train.py --config config/NTU.yml --nprocs 8  

Cross-modal Representation Interactive Learning

Take training a fusion model with 8 GPUs on the NTU-RGBD dataset as an example.

bash run.sh tools/fusion.py config/NTU.yml 0,1,2,3,4,5,6,7 8

or

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 python -m torch.distributed.launch --nproc_per_node=8 --master_port=1234 fusion.py --config config/NTU.yml --nprocs 8  

Evaluation

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 train.py --config config/NTU.yml --nprocs 1 --eval_only --resume /path/to/model_best.pth.tar 

4. Models Download

Dataset Modality Accuracy Download
NvGesture RGB 89.58 Google Drive
NvGesture Depth 90.62 Google Drive
NvGesture RGB-D 91.70 Google Drive
THU-READ RGB 81.25 Google Drive
THU-READ Depth 77.92 Google Drive
THU-READ RGB-D 87.04 Google Drive
NTU-RGBD(CS) RGB 90.3 Google Drive
NTU-RGBD(CS) Depth 92.7 Google Drive
NTU-RGBD(CS) RGB-D 94.2 Google Drive
NTU-RGBD(CV) RGB 95.4 Google Drive
NTU-RGBD(CV) Depth 96.2 Google Drive
NTU-RGBD(CV) RGB-D 97.3 Google Drive
IsoGD RGB 60.87 Google Drive
IsoGD Depth 60.17 Google Drive
IsoGD RGB-D 66.79 Google Drive

Citation

@inproceedings{zhou2021DRSR,
      title={Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition}, 
      author={Benjia Zhou and Pichao Wang and Jun Wan and Yanyan Liang and Fan Wang and Du Zhang and Zhen Lei and Hao Li and Rong Jin},
      journal={arXiv preprint arXiv:2112.09129},
      year={2021},
}

LICENSE

The code is released under the MIT license.

Copyright

Copyright (C) 2010-2021 Alibaba Group Holding Limited.

Owner
DamoCV
CV team of DAMO academy
DamoCV
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
A PyTorch Implementation of PGL-SUM from "Combining Global and Local Attention with Positional Encoding for Video Summarization", Proc. IEEE ISM 2021

PGL-SUM: Combining Global and Local Attention with Positional Encoding for Video Summarization PyTorch Implementation of PGL-SUM From "PGL-SUM: Combin

Evlampios Apostolidis 35 Dec 22, 2022
Uncertain natural language inference

Uncertain Natural Language Inference This repository hosts the code for the following paper: Tongfei Chen*, Zhengping Jiang*, Adam Poliak, Keisuke Sak

Tongfei Chen 14 Sep 01, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Hso-groupie - A pwnable challenge in Real World CTF 4th

Hso-groupie - A pwnable challenge in Real World CTF 4th

Riatre Foo 42 Dec 05, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Oleksii Kachaiev 24 Nov 11, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022