ObjectDetNet is an easy, flexible, open-source object detection framework

Overview

Getting started with the ObjectDetNet

ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resume & prototype training sessions, run inference and flexibly work with checkpoints in a production grade environment.

Quick Start

Copy and paste this into your command line

#run in docker 
docker run --rm -it --init  --runtime=nvidia  --ipc=host  -e NVIDIA_VISIBLE_DEVICES=0 buffalonoam/zazu-image:0.3 bash

mkdir data
cd data
git clone https://github.com/dataloop-ai/tiny_coco.git
cd ..
git clone https://github.com/dataloop-ai/ObjectDetNet.git
cd ObjectDetNet
python main.py --train

After training just run:

python main.py --predict 
# OR 
python main.py --predict_single
# to predict a single item

To change the data you run on or the parameters of your model just update the example_checkpoint.pt file!

At the core of the ObjectDetNet framework is the checkpoint object. The checkpoint object is a json, pt or json styled file to be loaded into python as a dictionary. Checkpoint objects aren't just used for training, but also necessary for running inference. Bellow is an example of how a checkpoint object might look.

├── {} devices
│   ├── {} gpu_index
│       ├── 0
├── {} model_specs
│   ├── {} name
│       ├── retinanet
│   ├── {} training_configs
│       ├── {} depth
│           ├── 152
│       ├── {} input_size
│       ├── {} learning_rate
│   ├── {} data
│       ├── {} home_path
│       ├── {} annotation_type
│           ├── coco
│       ├── {} dataset_name
├── {} hp_values
│       ├── {} learning_rate
│       ├── {} tuner/epochs
│       ├── {} tuner/initial_epoch
├── {} labels
│       ├── {} 0
│           ├── Rodent
│       ├── {} 1
│       ├── {} 2
├── {} metrics
│       ├── {} val_accuracy
│           ├── 0.834
├── {} model
├── {} optimizer
├── {} scheduler
├── {} epoch
│       ├── 18

For training your checkpoint dictionary must have the following keys:

  • device - gpu index for which to convert all tensors
  • model_specs - contains 3 fields
    1. name
    2. training_configs
    3. data

To resume training you'll also need:

  • model - contains state of model weights
  • optimizer - contains state of optimizer
  • scheduler - contains state of scheduler
  • epoch - to know what epoch to start from

To run inference your checkpoint will need:

  • model_specs
  • labels

If you'd like to customize by adding your own model, check out Adding a Model

Feel free to reach out with any questions

WeChat: BuffaloNoam
Line: buffalonoam
WhatsApp: +972524226459

Refrences

Thank you to these repositories for their contributions to the ObjectDetNet

Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
The implementation of our CIKM 2021 paper titled as: "Cross-Market Product Recommendation"

FOREC: A Cross-Market Recommendation System This repository provides the implementation of our CIKM 2021 paper titled as "Cross-Market Product Recomme

Hamed Bonab 16 Sep 12, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
official Pytorch implementation of ICCV 2021 paper FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting.

FuseFormer: Fusing Fine-Grained Information in Transformers for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu

77 Dec 27, 2022
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2022/01/05 By another round of training based on previous weights, our model also achieved a better performance on ACDC (91.61% DSC). W

dotman 92 Dec 25, 2022
Deep-learning X-Ray Micro-CT image enhancement, pore-network modelling and continuum modelling

EDSR modelling A Github repository for deep-learning image enhancement, pore-network and continuum modelling from X-Ray Micro-CT images. The repositor

Samuel Jackson 7 Nov 03, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
Autonomous Movement from Simultaneous Localization and Mapping

Autonomous Movement from Simultaneous Localization and Mapping About us Built by a group of Clarkson University students with the help from Professor

14 Nov 07, 2022
Dynamic Realtime Animation Control

Our project is targeted at making an application that dynamically detects the user’s expressions and gestures and projects it onto an animation software which then renders a 2D/3D animation realtime

Harsh Avinash 10 Aug 01, 2022