This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Overview

Core-tuning

This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning" (NeurIPS 2021).

The key contributions of this paper are threefold:

  • To the best of our knowledge, we are among the first to look into the fine-tuning stage of contrastive self-supervised learning (CSL) models, which is an important yet under-explored question. To address this, we propose a novel Core-tuning method.
  • We theoretically analyze the benefits of the supervised contrastive loss on representation learning and model optimization, revealing that it is beneficial to model fine-tuning.
  • Promising results on image classification and semantic segmentation verify the effectiveness of Core-tuning for improving the fine-tuning performance of CSL models. We also empirically find that Core-tuning benefits CSL models in terms of domain generalization and adversarial robustness on downstream tasks. Considering the theoretical guarantee and empirical effectiveness of Core-tuning, we recommend using it as a standard baseline to fine-tune CSL models.

The implementation is as follows.

1. Requirements

  • To install requirements:
pip install -r requirements.txt

2. Pretrained models

  • We provide two checkpoints via Google Drive. Please download the two checkpoints from here.
  • One checkpoint is the pre-trained ResNet-50(1x) model, pre-trained by MoCo-v2. We name it pretrain_moco_v2.pkl, which is a necessity for training.
  • Another one is the ResNet-50 model fine-tuned by our proposed method, named Core-tuning-model.tar. From this checkpoint, users can directly evaluate the end results without having to train afresh.
  • Unzip the download zip file and move the checkpoint files to /code/checkpoint/.

3. Datasets

  • The dataset of CIFAR-10 can be downloaded by directly running our code.

4. Training

  • To train the model(s) in the paper, run this command:
python Core-tuning.py -a resnet50-ssl --gpu 0 -d cifar10 --eta_weight 0.1 --mixup_alpha 1  --checkpoint checkpoint/ssl-core-tuning/Core_eta0.1_alpha1 --train-batch 64 --accumulate_step 4 --test-batch 100  
  • Note that the GPU memory should be 24G. Otherwise, you need to halve the train batch size and double the accumulation step. Based on the accumulation, the total training batch is 256.

5. Evaluation

  • To evaluate models, run:
python Core-tuning.py -a resnet50-ssl --gpu 0 -d cifar10 --test-batch 100 --evaluate --checkpoint checkpoint/Core-tuning-model/ --resume checkpoint/Core-tuning-model/Core-tuning-model.tar
  • The path above refers to our provided checkpoint. You can validate your model by changing the file path of "--checkpoint" and "--resume".

6. Results

  • Our model achieves the following performance on CIFAR-10:
Methods Top 1 Accuracy
CE-tuning 94.70+/-0.39
Core-tuning (ours) 97.31+/-0.10
  • Visualizaiton of the learned features on the CIFAR10 validation set:

7. Citaiton

If you find our work inspiring or use our codebase in your research, please cite our work.

@inproceedings{zhang2021unleashing,
  title={Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning},
  author={Zhang, Yifan and Hooi, Bryan and Hu, Dapeng and Liang, Jian and Feng, Jiashi},
  booktitle={Advances in Neural Information Processing Systems}, 
  year={2021}
}

8. Acknowledgements

This project is developed based on MoCo and SupContrast.

Owner
vanint
vanint
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Code for NeurIPS 2020 article "Contrastive learning of global and local features for medical image segmentation with limited annotations"

Contrastive learning of global and local features for medical image segmentation with limited annotations The code is for the article "Contrastive lea

Krishna Chaitanya 152 Dec 22, 2022
Robust & Reliable Route Recommendation on Road Networks

NeuroMLR: Robust & Reliable Route Recommendation on Road Networks This repository is the official implementation of NeuroMLR: Robust & Reliable Route

4 Dec 20, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
PyTorch implementation of DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration (BMVC 2021)

DeepUME: Learning the Universal Manifold Embedding for Robust Point Cloud Registration [video] [paper] [supplementary] [data] [thesis] Introduction De

Natalie Lang 10 Dec 14, 2022
CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image Segmentation

CoTr: Efficient 3D Medical Image Segmentation by bridging CNN and Transformer This is the official pytorch implementation of the CoTr: Paper: CoTr: Ef

218 Dec 25, 2022
Safe Policy Optimization with Local Features

Safe Policy Optimization with Local Feature (SPO-LF) This is the source-code for implementing the algorithms in the paper "Safe Policy Optimization wi

Akifumi Wachi 6 Jun 05, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN in PyTorch Official implementation of StyleCariGAN:Caricature Generation via StyleGAN Feature Map Modulation in PyTorch Requirements PyTo

PeterZhouSZ 49 Oct 31, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
End-To-End Optimization of LiDAR Beam Configuration

End-To-End Optimization of LiDAR Beam Configuration arXiv | IEEE Xplore This repository is the official implementation of the paper: End-To-End Optimi

Niclas 30 Nov 28, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database.

MIMIC-III Benchmarks Python suite to construct benchmark machine learning datasets from the MIMIC-III clinical database. Currently, the benchmark data

Chengxi Zang 6 Jan 02, 2023
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
The official github repository for Towards Continual Knowledge Learning of Language Models

Towards Continual Knowledge Learning of Language Models This is the official github repository for Towards Continual Knowledge Learning of Language Mo

Joel Jang | 장요엘 65 Jan 07, 2023
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022