This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Overview

Core-tuning

This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning" (NeurIPS 2021).

The key contributions of this paper are threefold:

  • To the best of our knowledge, we are among the first to look into the fine-tuning stage of contrastive self-supervised learning (CSL) models, which is an important yet under-explored question. To address this, we propose a novel Core-tuning method.
  • We theoretically analyze the benefits of the supervised contrastive loss on representation learning and model optimization, revealing that it is beneficial to model fine-tuning.
  • Promising results on image classification and semantic segmentation verify the effectiveness of Core-tuning for improving the fine-tuning performance of CSL models. We also empirically find that Core-tuning benefits CSL models in terms of domain generalization and adversarial robustness on downstream tasks. Considering the theoretical guarantee and empirical effectiveness of Core-tuning, we recommend using it as a standard baseline to fine-tune CSL models.

The implementation is as follows.

1. Requirements

  • To install requirements:
pip install -r requirements.txt

2. Pretrained models

  • We provide two checkpoints via Google Drive. Please download the two checkpoints from here.
  • One checkpoint is the pre-trained ResNet-50(1x) model, pre-trained by MoCo-v2. We name it pretrain_moco_v2.pkl, which is a necessity for training.
  • Another one is the ResNet-50 model fine-tuned by our proposed method, named Core-tuning-model.tar. From this checkpoint, users can directly evaluate the end results without having to train afresh.
  • Unzip the download zip file and move the checkpoint files to /code/checkpoint/.

3. Datasets

  • The dataset of CIFAR-10 can be downloaded by directly running our code.

4. Training

  • To train the model(s) in the paper, run this command:
python Core-tuning.py -a resnet50-ssl --gpu 0 -d cifar10 --eta_weight 0.1 --mixup_alpha 1  --checkpoint checkpoint/ssl-core-tuning/Core_eta0.1_alpha1 --train-batch 64 --accumulate_step 4 --test-batch 100  
  • Note that the GPU memory should be 24G. Otherwise, you need to halve the train batch size and double the accumulation step. Based on the accumulation, the total training batch is 256.

5. Evaluation

  • To evaluate models, run:
python Core-tuning.py -a resnet50-ssl --gpu 0 -d cifar10 --test-batch 100 --evaluate --checkpoint checkpoint/Core-tuning-model/ --resume checkpoint/Core-tuning-model/Core-tuning-model.tar
  • The path above refers to our provided checkpoint. You can validate your model by changing the file path of "--checkpoint" and "--resume".

6. Results

  • Our model achieves the following performance on CIFAR-10:
Methods Top 1 Accuracy
CE-tuning 94.70+/-0.39
Core-tuning (ours) 97.31+/-0.10
  • Visualizaiton of the learned features on the CIFAR10 validation set:

7. Citaiton

If you find our work inspiring or use our codebase in your research, please cite our work.

@inproceedings{zhang2021unleashing,
  title={Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning},
  author={Zhang, Yifan and Hooi, Bryan and Hu, Dapeng and Liang, Jian and Feng, Jiashi},
  booktitle={Advances in Neural Information Processing Systems}, 
  year={2021}
}

8. Acknowledgements

This project is developed based on MoCo and SupContrast.

Owner
vanint
vanint
An evaluation toolkit for voice conversion models.

Voice-conversion-evaluation An evaluation toolkit for voice conversion models. Sample test pair Generate the metadata for evaluating models. The direc

30 Aug 29, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022
This repository contains the code for the ICCV 2019 paper "Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics"

Occupancy Flow This repository contains the code for the project Occupancy Flow - 4D Reconstruction by Learning Particle Dynamics. You can find detail

189 Dec 29, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
AntroPy: entropy and complexity of (EEG) time-series in Python

AntroPy is a Python 3 package providing several time-efficient algorithms for computing the complexity of time-series. It can be used for example to e

Raphael Vallat 153 Dec 27, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
Evaluating Cross-lingual Sentence Representations

XNLI: The Cross-Lingual NLI Corpus XNLI is an evaluation corpus for language transfer and cross-lingual sentence classification in 15 languages. New:

Meta Research 395 Dec 19, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel

Blind Image Super-resolution with Elaborate Degradation Modeling on Noise and Kernel This repository is the official PyTorch implementation of BSRDM w

Zongsheng Yue 69 Jan 05, 2023
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
Deep Learning Based Fasion Recommendation System for Ecommerce

Project Name: Fasion Recommendation System for Ecommerce A Deep learning based streamlit web app which can recommened you various types of fasion prod

BAPPY AHMED 13 Dec 13, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022