Synthetic LiDAR sequential point cloud dataset with point-wise annotations

Related tags

Deep LearningSynLiDAR
Overview

arXiv

SynLiDAR dataset: Learning From Synthetic LiDAR Sequential Point Cloud

This is official repository of the SynLiDAR dataset. For technical details, please refer to:

SynLiDAR: Learning From Synthetic LiDAR Sequential Point Cloud for Semantic Segmentation (Paper)

Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, Shijian Lu

News

[2021.Jul.28] SynLiDAR is available for download!

Dataset

SynLiDAR is a large-scale synthetic LiDAR sequential point cloud dataset with point-wise annotations. 13 sequences of LiDAR point cloud with around 20k scans (over 19 billion points and 32 semantic classes) are collected from virtual urban cities, suburban towns, neighborhood, and harbor.

image

image

image

Download (245.3GB)

  1. You can download SynLiDAR through browser → DR-NTU

  2. You can also download through provided python script, this requires installing pyDataverse

pip install pyDataverse
python download.py

Note: For most of sequences, we compressed and split them into multiple small files. Please download them and cat into one file before extraction. E.g. for sequence 01:

cat 01*>01.tar.gz
tar -zxvf 11.tar.gz

The data should organized in the following format:

/SynLiDAR/
  └── 00/
    └── velodyne
      └── 000000.bin
      ├── 000001.bin
      ...
    └── labels
      └── 000000.label
      ├── 000001.label
      ...
  ...
  └── annotations.yaml
  └── read_data.py

We provide class annotations (in 'annotations.yaml') and example python code for reading data (in 'read_data.py').

Citation

If you find our work useful in your research, please consider citing:

@article{xiao2021synlidar,  
  title={SynLiDAR: Learning From Synthetic LiDAR Sequential Point Cloud for Semantic Segmentation},  
  author={Xiao, Aoran and Huang, Jiaxing and Guan, Dayan and Zhan, Fangneng and Lu, Shijian},  
  journal={arXiv preprint arXiv:2107.05399},  
  year={2021}  
}  
Owner
Ph.D. student
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis.

AITom Introduction AITom is an open-source platform for AI driven cellular electron cryo-tomography analysis. AITom is originated from the tomominer l

93 Jan 02, 2023
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Distance correlation and related E-statistics in Python

dcor dcor: distance correlation and related E-statistics in Python. E-statistics are functions of distances between statistical observations in metric

Carlos Ramos Carreño 108 Dec 27, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
《Improving Unsupervised Image Clustering With Robust Learning》(2020)

Improving Unsupervised Image Clustering With Robust Learning This repo is the PyTorch codes for "Improving Unsupervised Image Clustering With Robust L

Sungwon Park 129 Dec 27, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
JAX + dataclasses

jax_dataclasses jax_dataclasses provides a wrapper around dataclasses.dataclass for use in JAX, which enables automatic support for: Pytree registrati

Brent Yi 35 Dec 21, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022