DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

Related tags

Deep LearningDyStyle
Overview

DyStyle: Dynamic Neural Network for Multi-Attribute-Conditioned Style Editing

Figure: Joint multi-attribute edits using DyStyle model.

Great diversity and photorealism have been achieved by unconditional GAN frameworks such as StyleGAN and its variations. In the meantime, persistent efforts have been made to enhance the semantic controllability of StyleGANs. For example, a dozen of style manipulation methods have been recently proposed to perform attribute-conditioned style editing. Although some of these methods work well in manipulating the style codes along one attribute, the control accuracy when jointly manipulating multiple attributes tends to be problematic. To address these limitations, we propose a Dynamic Style Manipulation Network (DyStyle) whose structure and parameters vary by input samples, to perform nonlinear and adaptive manipulation of latent codes for flexible and precise attribute control. Additionally, a novel easy-to-hard training procedure is introduced for efficient and stable training of the DyStyle network. Extensive experiments have been conducted on faces and other objects. As a result, our approach demonstrates fine-grained disentangled edits along multiple numeric and binary attributes. Qualitative and quantitative comparisons with existing style manipulation methods verify the superiority of our method in terms of the attribute control accuracy and identity preservation without compromising the photorealism. The advantage of our method is even more significant for joint multi-attribute control.

[paper]

Demo

Single Attribute edits

examples when editing facial expressions on real face.

examples when editing pupil color, hair color, mouth size and hair length on anime face.

examples when editing eye, mouth, yaw and age on cat face.

Multiple Attribute Edits

examples when editing both yaw and glass on real face.

images before editing

images after editing

Real photo editing reconstructed with pSp and edited with DyStyle.

Installation

  1. Clone this repo.
  2. This code require PyTorch, Python 3+. Please install the dependencies by
conda env create -f environment.yml

Editing Images with Pretrained Model

Before editing images, you need to prepare the checkpoint, GAN generator and edit config.

Then you can just run the following scripts,

sh run_test_adult.sh [device_id]
sh run_test_anime.sh [device_id]
sh run_test_cat.sh [device_id]
sh run_test_dog.sh [device_id]

Training DyStyle Model

Before training DyStyle Model, you need to prepare the GAN generator, Attribute Classifier and model config.

Then you can just run the following scripts,

sh run_train_adult.sh [device_id]
sh run_train_anime.sh [device_id]
sh run_train_cat.sh [device_id]
sh run_train_dog.sh [device_id]

License

©ByteDance, 2021. For academic and non-commercial use only.

Citation

To be updated.

Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data

GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data By Shuchang Zhou, Taihong Xiao, Yi Yang, Dieqiao Feng, Qinyao He, W

Taihong Xiao 141 Apr 16, 2021
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks This is the official repository for our paper: Sharpness-aware Quantization for Deep Neural Netw

Zhuang AI Group 30 Dec 19, 2022
Implementation of Self-supervised Graph-level Representation Learning with Local and Global Structure (ICML 2021).

Self-supervised Graph-level Representation Learning with Local and Global Structure Introduction This project is an implementation of ``Self-supervise

MilaGraph 50 Dec 09, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Official code for paper Exemplar Based 3D Portrait Stylization.

3D-Portrait-Stylization This is the official code for the paper "Exemplar Based 3D Portrait Stylization". You can check the paper on our project websi

60 Dec 07, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
An end-to-end framework for mixed-integer optimization with data-driven learned constraints.

OptiCL OptiCL is an end-to-end framework for mixed-integer optimization (MIO) with data-driven learned constraints. We address a problem setting in wh

Holly Wiberg 57 Dec 26, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023