This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

Overview

STaCK: Sentence Ordering with Temporal Commonsense Knowledge

This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

Alt text

Sentence ordering is the task of finding the correct order of sentences in a randomly ordered document. Correctly ordering the sentences requires an understanding of coherence with respect to the chronological sequence of events described in the text. Document-level contextual understanding and commonsense knowledge centered around these events is often essential in uncovering this coherence and predicting the exact chronological order. In this paper, we introduce STaCK --- a framework based on graph neural networks and temporal commonsense knowledge to model global information and predict the relative order of sentences. Our graph network accumulates temporal evidence using knowledge of past and future and formulates sentence ordering as a constrained edge classification problem. We report results on five different datasets, and empirically show that the proposed method is naturally suitable for order prediction.

Data

Contact the authors of the paper Sentence Ordering and Coherence Modeling using Recurrent Neural Networks to obtain the AAN, NIPS and NSF datasets.

Download the stories of images in sequence SIND dataset (SIS) from the Visual Storytelling website.

Keep the files in appropriate folders in data/

The ROC dataset with train, validation, and test splits are provided in this repository.

Prepare Datasets

python prepare_data.py
python prepare_csk.py

Experiments:

Train and evaluate using:

CUDA_VISIBLE_DEVICES=0 python train_csk.py --lr 1e-6 --dataset nips --epochs 10 --hdim 200 --batch-size 8 --pfd

For other datasets, you can use the argument --dataset [aan|nsf|roc|sind]. The --pfd argument ensures that the past and future commonsense knowledge nodes have different relations. Remove this argument to use the same relation.

We recommend using a learning rate of 1e-6 for all the datasets. Run the experiments multiple times and average the scores to reproduce the results reported in the paper.

Citation

Please cite the following paper if the use this code in your work:

Deepanway Ghosal, Navonil Majumder, Rada Mihalcea, Soujanya Poria. "STaCK: Sentence Ordering with Temporal Commonsense Knowledge." In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Credits

Some of the code in this repository is borrowed from https://github.com/shrimai/Topological-Sort-for-Sentence-Ordering

Owner
Deep Cognition and Language Research (DeCLaRe) Lab
Deep Cognition and Language Research (DeCLaRe) Lab
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

You can draw the corresponding bounding box into the image and save it according to the result file (txt format) run by the tracker.

Huiyiqianli 42 Dec 06, 2022
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Phil Wang 1.5k Jan 02, 2023
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
Change Detection in SAR Images Based on Multiscale Capsule Network

SAR_CD_MS_CapsNet Code for the paper "Change Detection in SAR Images Based on Multiscale Capsule Network" , IEEE Geoscience and Remote Sensing Letters

Feng Gao 21 Nov 29, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
๐Ÿ”ฎ A refreshing functional take on deep learning, compatible with your favorite libraries

Thinc: A refreshing functional take on deep learning, compatible with your favorite libraries From the makers of spaCy, Prodigy and FastAPI Thinc is a

Explosion 2.6k Dec 30, 2022
A weakly-supervised scene graph generation codebase. The implementation of our CVPR2021 paper ``Linguistic Structures as Weak Supervision for Visual Scene Graph Generation''

README.md shall be finished soon. WSSGG 0 Overview 1 Installation 1.1 Faster-RCNN 1.2 Language Parser 1.3 GloVe Embeddings 2 Settings 2.1 VG-GT-Graph

Keren Ye 35 Nov 20, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .โ–„โ–„ ยท โ–„ยท โ–„โ–Œ โ– โ–„ โ–„โ–„โ–„ยท โ– โ–„ โ–โ–ˆ โ–€. โ–โ–ˆโ–ชโ–ˆโ–ˆโ–Œโ€ขโ–ˆโ–Œโ–โ–ˆโ–โ–ˆ โ–„โ–ˆโ–ช โ€ขโ–ˆโ–Œโ–โ–ˆ โ–„โ–€โ–€โ–€โ–ˆโ–„โ–โ–ˆโ–Œโ–โ–ˆโ–ชโ–โ–ˆโ–โ–โ–Œ โ–ˆโ–ˆโ–€

SynPon 53 Dec 12, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Implementation of the ๐Ÿ˜‡ Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
This is the code for CVPR 2021 oral paper: Jigsaw Clustering for Unsupervised Visual Representation Learning

JigsawClustering Jigsaw Clustering for Unsupervised Visual Representation Learning Pengguang Chen, Shu Liu, Jiaya Jia Introduction This project provid

DV Lab 73 Sep 18, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
Code for database and frontend of webpage for Neural Fields in Visual Computing and Beyond.

Neural Fields in Visual Computingโ€”Complementary Webpage This is based on the amazing MiniConf project from Hendrik Strobelt and Sasha Rushโ€”thank you!

Brown University Visual Computing Group 29 Nov 30, 2022