Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Overview

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs

This repository is the implementation of SELAR.

Dasol Hwang* , Jinyoung Park* , Sunyoung Kwon, Kyung-min Kim, Jung-Woo Ha, Hyunwoo J. Kim, Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs, In Advanced in Neural Information Processing Systems (NeurIPS 2020).

Data Preprocessing

We used datasets from KGNN-LS and RippleNet for link prediction. Download meta-paths label (meta_labels/) from this link.

  • data/music/

    • ratings_final.npy : preprocessed rating file released by KGNN-LS;
    • kg_final.npy : knowledge graph file;
      • meta_labels/
        • pos_meta{}_{}.pickle : meta-path positive label for auxiliary task
        • neg_meta{}_{}.pickle : meta-path negative label for auxiliary task
  • data/book/

    • ratings_final.npy : preprocessed rating file released by RippleNet;
    • kg_final.npy : knowledge graph file;
      • meta_labels/
        • pos_meta{}_{}.pickle : meta-path positive label for auxiliary task
        • neg_meta{}_{}.pickle : meta-path negative label for auxiliary task

Required packages

A list of dependencies will need to be installed in order to run the code. We provide the dependency yaml file (env.yml)

$ conda env create -f env.yml

Running the code

# check optional arguments [-h]
$ python main_music.py
$ python main_book.py

Overview of the results of link prediction

Last-FM (Music)

Base GNNs Vanilla w/o MP w/ MP SELAR SELAR+Hint
GCN 0.7963 0.7899 0.8235 0.8296 0.8121
GAT 0.8115 0.8115 0.8263 0.8294 0.8302
GIN 0.8199 0.8217 0.8242 0.8361 0.8350
SGC 0.7703 0.7766 0.7718 0.7827 0.7975
GTN 0.7836 0.7744 0.7865 0.7988 0.8067

Book-Crossing (Book)

Base GNNs Vanilla w/o MP w/ MP SELAR SELAR+Hint
GCN 0.7039 0.7031 0.7110 0.7182 0.7208
GAT 0.6891 0.6968 0.7075 0.7345 0.7360
GIN 0.6979 0.7210 0.7338 0.7526 0.7513
SGC 0.6860 0.6808 0.6792 0.6902 0.6926
GTN 0.6732 0.6758 0.6724 0.6858 0.6850

Citation

@inproceedings{NEURIPS2020_74de5f91,
 author = {Hwang, Dasol and Park, Jinyoung and Kwon, Sunyoung and Kim, KyungMin and Ha, Jung-Woo and Kim, Hyunwoo J},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Larochelle and M. Ranzato and R. Hadsell and M. F. Balcan and H. Lin},
 pages = {10294--10305},
 publisher = {Curran Associates, Inc.},
 title = {Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs},
 url = {https://proceedings.neurips.cc/paper/2020/file/74de5f915765ea59816e770a8e686f38-Paper.pdf},
 volume = {33},
 year = {2020}
}

License

Copyright (c) 2020-present NAVER Corp. and Korea University 
Owner
MLV Lab (Machine Learning and Vision Lab at Korea University)
MLV Lab (Machine Learning and Vision Lab at Korea University)
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 410 Jan 03, 2023
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
Official PyTorch Implementation of SSMix (Findings of ACL 2021)

SSMix: Saliency-based Span Mixup for Text Classification (Findings of ACL 2021) Official PyTorch Implementation of SSMix | Paper Abstract Data augment

Clova AI Research 52 Dec 27, 2022
Riemannian Geometry for Molecular Surface Approximation (RGMolSA)

Riemannian Geometry for Molecular Surface Approximation (RGMolSA) Introduction Ligand-based virtual screening aims to reduce the cost and duration of

11 Nov 15, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Hide screen when boss is approaching.

BossSensor Hide your screen when your boss is approaching. Demo The boss stands up. He is approaching. When he is approaching, the program fetches fac

Hiroki Nakayama 6.2k Jan 07, 2023
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Reproducing Results from A Hybrid Approach to Targeting Social Assistance

title author date output Reproducing Results from A Hybrid Approach to Targeting Social Assistance Lendie Follett and Heath Henderson 12/28/2021 html_

Lendie Follett 0 Jan 06, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022