buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

Overview

buildseg

Python 3.8 PaddlePaddle 2.2 QGIS 3.16.11

buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle.

fds

How to use

  1. Download and install QGIS and clone the repo :
git clone [email protected]:geoyee/buildseg.git
  1. Install requirements :

    • Enter the folder and install dependent libraries using OSGeo4W shell (Open As Administrator) :
    cd buildseg
    pip install -r requirements.txt
    • Or open OSGeo4W shell as administrator and enter :
    pip install opencv-python paddlepaddle>=2.2.0 paddleseg --user
  2. Copy folder named buildseg in QGIS configuration folder and choose the plugin from plugin manager in QGIS (If not appeared restart QGIS).

    • You can know this folder from QGIS Setting Menu at the top-left of QGIS UI Settings > User Profiles > Open Active Profile Folder .
    • Go to python/plugins then paste the buildseg folder.
    • Full path should be like : C:\Users\$USER\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\buildseg.
  3. Open QGIS, load your raster and select the parameter file (*.pdiparams) then click ok.

Model and Parameter

Model Backbone Resolution mIoU Params(MB) Inference Time(ms) Links
OCRNet HRNet_W18 512x512 90.64% 46.4 / Static Weight
  • Train/Eval Dataset : Link.
  • We have done all testing and development using : Tesla V100 32G in AI Studio.

TODO

  • Extract building on 512x512 remote sensing images.
  • Extract building on big remote sensing images through splitting it into small tiles, extract buildings then mosaic it back (merge) to a full extent.
  • Replace the model and parameters (large-scale data).
  • Convert to static weight (*.pdiparams) instead of dynamic model (*.pdparams).
  • Add a Jupyter Notebook (*.ipynb) about how to fine-tune parameters using other's datasets based on PaddleSeg.
  • Hole digging inside the polygons.
  • Convert raster to Shapefile/GeoJson by GDAL/OGR (gdal.Polygonize) instead of findContours in OpenCV.
  • Update plugin's UI :
    • Add menu to select one raster file from QGIS opened raster layers.
    • Select the Parameter path one time (some buggy windows appear when importing the *.pdiparams file).
    • Define the output path of the vector file (Direct Path or Temporary in the memory).
    • Add setting about used GPU / block size and overlap size.
  • Accelerate, etc.
  • Add another model, like Vision Transform.
You might also like...
Multi-Modal Machine Learning toolkit based on PaddlePaddle.
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • QGIS crashes in startup of the plugin on Linux/Ubuntu

    QGIS crashes in startup of the plugin on Linux/Ubuntu

    Bug with Linux/Debian/Ubuntu image

    and when installing raspberry bi deps image

    it just crashes when trying to import paddle (in QGIS Python script window) without trying to install the plugin

    Tried on Ubuntu 18.04 and 20.04

    bug solved 
    opened by Youssef-Harby 4
  • Use ONNX

    Use ONNX

    please check this branch, test in Mac OS and update README / README_CN (☑ On mac OS Big Sur+). if you think we should use this branch rather than develop (use onnx instead of paddle), you can argee with the pr. or not, please write your viewpoint. thank you youssef ☺

    opened by geoyee 2
  • Installation Bug Report: Plugin Error while installation

    Installation Bug Report: Plugin Error while installation

    An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=False)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0]

    QGIS version: 3.22.3-Białowieża 'Białowieża', 1628765ec7

    Python path: ['/usr/share/qgis/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/usr/lib/python38.zip', '/usr/lib/python3.8', '/usr/lib/python3.8/lib-dynload', '/home/robotics/.local/lib/python3.8/site-packages', '/usr/local/lib/python3.8/dist-packages', '/usr/lib/python3/dist-packages', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins/DeepLearningTools']

    bug solved 
    opened by makamkkumar 2
  • Installation: using QGIS

    Installation: using QGIS "Manage and Install Plugins", or directions in the md file?

    What is better for Installation: using QGIS "Manage and Install Plugins", or following directions in the md file? Using the QGIS installer (3.24.0-Tisler) I get: An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=True)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.9.5 (default, Nov 18 2021, 16:00:48) [GCC 10.3.0]

    QGIS version: 3.24.0-Tisler 'Tisler', 6b44a42058

    Python path: ['/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/terminus_processing', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/LAStools', '/usr/share/qgis/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/home/alobo/OTB/OTB-7.3.0-Linux64/lib/python', '/usr/lib/python39.zip', '/usr/lib/python3.9', '/usr/lib/python3.9/lib-dynload', '/home/alobo/.local/lib/python3.9/site-packages', '/usr/local/lib/python3.9/dist-packages', '/usr/lib/python3/dist-packages', '/usr/lib/python3.9/dist-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '.', '/home/alobo/.local/lib/python3.9/site-packages/IPython/extensions', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/qgispluginsupport/qps/pyqtgraph', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/apps', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/coreapps']

    bug 
    opened by aloboa 3
Releases(v0.3.1)
Official code for Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset

Official code for our Interspeech 2021 - Spoken ObjectNet: A Bias-Controlled Spoken Caption Dataset [1]*. Visually-grounded spoken language datasets c

Ian Palmer 3 Jan 26, 2022
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
Recreate CenternetV2 based on MMDET.

Introduction This project is trying to Recreate CenternetV2 based on MMDET, which is proposed in paper Probabilistic two-stage detection. This project

25 Dec 09, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Sandbox for training deep learning networks

Deep learning networks This repo is used to research convolutional networks primarily for computer vision tasks. For this purpose, the repo contains (

Oleg Sémery 2.7k Jan 01, 2023
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Real-ESRGAN Colab Demo for Real-ESRGAN . Portable Windows executable file. You can find more information here. Real-ESRGAN aims at developing Practica

Xintao 17.2k Jan 02, 2023
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Supporting code for short YouTube series Neural Networks Demystified.

Neural Networks Demystified Supporting iPython notebooks for the YouTube Series Neural Networks Demystified. I've included formulas, code, and the tex

Stephen 1.3k Dec 23, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
Applying CLIP to Point Cloud Recognition.

PointCLIP: Point Cloud Understanding by CLIP This repository is an official implementation of the paper 'PointCLIP: Point Cloud Understanding by CLIP'

Renrui Zhang 175 Dec 24, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022