buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

Overview

buildseg

Python 3.8 PaddlePaddle 2.2 QGIS 3.16.11

buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle.

fds

How to use

  1. Download and install QGIS and clone the repo :
git clone [email protected]:geoyee/buildseg.git
  1. Install requirements :

    • Enter the folder and install dependent libraries using OSGeo4W shell (Open As Administrator) :
    cd buildseg
    pip install -r requirements.txt
    • Or open OSGeo4W shell as administrator and enter :
    pip install opencv-python paddlepaddle>=2.2.0 paddleseg --user
  2. Copy folder named buildseg in QGIS configuration folder and choose the plugin from plugin manager in QGIS (If not appeared restart QGIS).

    • You can know this folder from QGIS Setting Menu at the top-left of QGIS UI Settings > User Profiles > Open Active Profile Folder .
    • Go to python/plugins then paste the buildseg folder.
    • Full path should be like : C:\Users\$USER\AppData\Roaming\QGIS\QGIS3\profiles\default\python\plugins\buildseg.
  3. Open QGIS, load your raster and select the parameter file (*.pdiparams) then click ok.

Model and Parameter

Model Backbone Resolution mIoU Params(MB) Inference Time(ms) Links
OCRNet HRNet_W18 512x512 90.64% 46.4 / Static Weight
  • Train/Eval Dataset : Link.
  • We have done all testing and development using : Tesla V100 32G in AI Studio.

TODO

  • Extract building on 512x512 remote sensing images.
  • Extract building on big remote sensing images through splitting it into small tiles, extract buildings then mosaic it back (merge) to a full extent.
  • Replace the model and parameters (large-scale data).
  • Convert to static weight (*.pdiparams) instead of dynamic model (*.pdparams).
  • Add a Jupyter Notebook (*.ipynb) about how to fine-tune parameters using other's datasets based on PaddleSeg.
  • Hole digging inside the polygons.
  • Convert raster to Shapefile/GeoJson by GDAL/OGR (gdal.Polygonize) instead of findContours in OpenCV.
  • Update plugin's UI :
    • Add menu to select one raster file from QGIS opened raster layers.
    • Select the Parameter path one time (some buggy windows appear when importing the *.pdiparams file).
    • Define the output path of the vector file (Direct Path or Temporary in the memory).
    • Add setting about used GPU / block size and overlap size.
  • Accelerate, etc.
  • Add another model, like Vision Transform.
You might also like...
Multi-Modal Machine Learning toolkit based on PaddlePaddle.
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

Awesome Remote Sensing Toolkit based on PaddlePaddle.
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)
Plaything for Autistic Children (demo for PaddlePaddle/Wechaty/Mixlab project)

星星的孩子 - 一款为孤独症孩子设计的聊天机器人游戏 孤独症儿童是目前常常被忽视的一类群体。他们有着类似性格内向的特征,实际却受着广泛性发育障碍的折磨。 项目背景 这类儿童在与人交往时存在着沟通障碍,其特点表现在: 社交交流差,互动障碍明显 认知能力有限,被动认知 兴趣狭窄,重复刻板,缺乏变化和想象

Official PaddlePaddle implementation of Paint Transformer
Official PaddlePaddle implementation of Paint Transformer

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [Paddle Implementation] Update We have optimized the serial inference p

An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Comments
  • QGIS crashes in startup of the plugin on Linux/Ubuntu

    QGIS crashes in startup of the plugin on Linux/Ubuntu

    Bug with Linux/Debian/Ubuntu image

    and when installing raspberry bi deps image

    it just crashes when trying to import paddle (in QGIS Python script window) without trying to install the plugin

    Tried on Ubuntu 18.04 and 20.04

    bug solved 
    opened by Youssef-Harby 4
  • Use ONNX

    Use ONNX

    please check this branch, test in Mac OS and update README / README_CN (☑ On mac OS Big Sur+). if you think we should use this branch rather than develop (use onnx instead of paddle), you can argee with the pr. or not, please write your viewpoint. thank you youssef ☺

    opened by geoyee 2
  • Installation Bug Report: Plugin Error while installation

    Installation Bug Report: Plugin Error while installation

    An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=False)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.8.10 (default, Nov 26 2021, 20:14:08) [GCC 9.3.0]

    QGIS version: 3.22.3-Białowieża 'Białowieża', 1628765ec7

    Python path: ['/usr/share/qgis/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/usr/lib/python38.zip', '/usr/lib/python3.8', '/usr/lib/python3.8/lib-dynload', '/home/robotics/.local/lib/python3.8/site-packages', '/usr/local/lib/python3.8/dist-packages', '/usr/lib/python3/dist-packages', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python', '/home/robotics/.local/share/QGIS/QGIS3/profiles/default/python/plugins/DeepLearningTools']

    bug solved 
    opened by makamkkumar 2
  • Installation: using QGIS

    Installation: using QGIS "Manage and Install Plugins", or directions in the md file?

    What is better for Installation: using QGIS "Manage and Install Plugins", or following directions in the md file? Using the QGIS installer (3.24.0-Tisler) I get: An error occurred during execution of following code: pyplugin_installer.instance().installPlugin('buildseg', stable=True)

    Traceback (most recent call last): File "", line 1, in File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 333, in installPlugin self.processDependencies(plugin["id"]) File "/usr/share/qgis/python/pyplugin_installer/installer.py", line 682, in processDependencies dlg = QgsPluginDependenciesDialog(plugin_id, to_install, to_upgrade, not_found) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 92, in init _make_row(data, i, name) File "/usr/share/qgis/python/pyplugin_installer/qgsplugindependenciesdialog.py", line 63, in _make_row widget.use_stable_version = data['use_stable_version'] KeyError: 'use_stable_version'

    Python version: 3.9.5 (default, Nov 18 2021, 16:00:48) [GCC 10.3.0]

    QGIS version: 3.24.0-Tisler 'Tisler', 6b44a42058

    Python path: ['/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/terminus_processing', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/LAStools', '/usr/share/qgis/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins', '/usr/share/qgis/python/plugins', '/home/alobo/OTB/OTB-7.3.0-Linux64/lib/python', '/usr/lib/python39.zip', '/usr/lib/python3.9', '/usr/lib/python3.9/lib-dynload', '/home/alobo/.local/lib/python3.9/site-packages', '/usr/local/lib/python3.9/dist-packages', '/usr/lib/python3/dist-packages', '/usr/lib/python3.9/dist-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python', '.', '/home/alobo/.local/lib/python3.9/site-packages/IPython/extensions', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/qgispluginsupport/qps/pyqtgraph', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/site-packages', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/apps', '/home/alobo/.local/share/QGIS/QGIS3/profiles/default/python/plugins/enmapboxplugin/enmapbox/coreapps']

    bug 
    opened by aloboa 3
Releases(v0.3.1)
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
OpenMMLab Image Classification Toolbox and Benchmark

Introduction English | 简体中文 MMClassification is an open source image classification toolbox based on PyTorch. It is a part of the OpenMMLab project. D

OpenMMLab 1.8k Jan 03, 2023
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
Mmdetection3d Noted - MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch

Jiangjingwen 13 Jan 06, 2023
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado financeiro.

Tutoriais Públicos Tutoriais publicados nas nossas redes sociais para obtenção de dados, análises simples e outras tarefas relevantes no mercado finan

Trading com Dados 68 Oct 15, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Distance-Ratio-Based Formulation for Metric Learning

Distance-Ratio-Based Formulation for Metric Learning Environment Python3 Pytorch (http://pytorch.org/) (version 1.6.0+cu101) json tqdm Preparing datas

Hyeongji Kim 1 Dec 07, 2022
Implementation of ICCV 2021 oral paper -- A Novel Self-Supervised Learning for Gaussian Mixture Model

SS-GMM Implementation of ICCV 2021 oral paper -- Self-Supervised Image Prior Learning with GMM from a Single Noisy Image with supplementary material R

HUST-The Tan Lab 4 Dec 05, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
This is the code of NeurIPS'21 paper "Towards Enabling Meta-Learning from Target Models".

ST This is the code of NeurIPS 2021 paper "Towards Enabling Meta-Learning from Target Models". If you use any content of this repo for your work, plea

Su Lu 7 Dec 06, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023