Canonical Appearance Transformations

Overview

CAT-Net: Learning Canonical Appearance Transformations

Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations for Direct Visual Localization Under Illumination Change".

Dependencies

  • numpy
  • matpotlib
  • pytorch + torchvision (1.2)
  • Pillow
  • progress (for progress bars in train/val/test loops)
  • tensorboard + tensorboardX (for visualization)
  • pyslam + liegroups (optional, for running odometry/localization experiments)
  • OpenCV (optional, for running odometry/localization experiments)

Training the CAT

  1. Download the ETHL dataset from here or the Virtual KITTI dataset from here
    1. ETHL only: rename ethl1/2 to ethl1/2_static.
    2. ETHL only: Update the local paths in tools/make_ethl_real_sync.py and run python3 tools/make_ethl_real_sync.py to generate a synchronized copy of the real sequences.
  2. Update the local paths in run_cat_ethl/vkitti.py and run python3 run_cat_ethl/vkitti.py to start training.
  3. In another terminal run tensorboard --port [port] --logdir [path] to start the visualization server, where [port] should be replaced by a numeric value (e.g., 60006) and [path] should be replaced by your local results directory.
  4. Tune in to localhost:[port] and watch the action.

Running the localization experiments

  1. Ensure the pyslam and liegroups packages are installed.
  2. Update the local paths in make_localization_data.py and run python3 make_localization_data.py [dataset] to compile the model outputs into a localization_data directory.
  3. Update the local paths in run_localization_[dataset].py and run python3 run_localization_[dataset].py [rgb,cat] to compute VO and localization results using either the original RGB or CAT-transformed images.
  4. You can compute localization errors against ground truth using the compute_localization_errors.py script, which generates CSV files and several plots. Update the local paths and run python3 compute_localization_errors.py [dataset].

Citation

If you use this code in your research, please cite:

@article{2018_Clement_Learning,
  author = {Lee Clement and Jonathan Kelly},
  journal = {{IEEE} Robotics and Automation Letters},
  link = {https://arxiv.org/abs/1709.03009},
  title = {How to Train a {CAT}: Learning Canonical Appearance Transformations for Direct Visual Localization Under Illumination Change},
  year = {2018}
}
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
Lucid Sonic Dreams syncs GAN-generated visuals to music.

Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses NVLabs StyleGAN2, with pre-trained models lifted from

731 Jan 02, 2023
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility function

Facebook Research 724 Jan 04, 2023
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
[CVPR 2022 Oral] EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation

EPro-PnP EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation In CVPR 2022 (Oral). [paper] Hanshen

同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University) 842 Jan 04, 2023
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Virtual Dance Reality Stage: a feature that offers you to share a stage with another user virtually

Portrait Segmentation using Tensorflow This script removes the background from an input image. You can read more about segmentation here Setup The scr

291 Dec 24, 2022