Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Overview

Rate Limit Semaphore

Rate limit semaphore for async-style (any core)

PyPI - Python Version PyPI - Implementation PyPI Coverage Status


There are two implementations of rate limit semaphore. Live demo shows how FixedNewPreviousDelaySemaphore and FixedNewFirstDelaySemaphore work


Live demo Live demo

Overview

import datetime
import ralisem

# Or another implementation
sem = ralisem.FixedNewPreviousDelaySemaphore(
    access_times=3, per=datetime.timedelta(seconds=1)
)
async with sem:
    ...

Difference:

  • FixedNewPreviousDelaySemaphore: Sures the last and a new access have a fixed required delay (per / access_times)
  • FixedNewFirstDelaySemaphore: Sures first and last in series (serias is access_times) have a fixed delay (per)

Methods

All of these implementations are inherited from one base TimeRateLimitSemaphoreBase. Check out full methods here

Installation

Via PyPI:

python -m pip install ralisem

Or via GitHub

python -m pip install https://github.com/deknowny/rate-limit-semaphore/archive/main.zip

Contributing

Check out Contributing section

You might also like...
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.
A fast poisson image editing implementation that can utilize multi-core CPU or GPU to handle a high-resolution image input.

Poisson Image Editing - A Parallel Implementation Jiayi Weng (jiayiwen), Zixu Chen (zixuc) Poisson Image Editing is a technique that can fuse two imag

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

Implementation of
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

PyTorch implementation of some learning rate schedulers for deep learning researcher.
PyTorch implementation of some learning rate schedulers for deep learning researcher.

pytorch-lr-scheduler PyTorch implementation of some learning rate schedulers for deep learning researcher. Usage WarmupReduceLROnPlateauScheduler Visu

Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

A Pytorch Implementation of a continuously rate adjustable learned image compression framework.
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

Pytorch implementation of Learning Rate Dropout.
Pytorch implementation of Learning Rate Dropout.

Learning-Rate-Dropout Pytorch implementation of Learning Rate Dropout. Paper Link: https://arxiv.org/pdf/1912.00144.pdf Train ResNet-34 for Cifar10: r

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks

Bayesian-Torch is a library of neural network layers and utilities extending the core of PyTorch to enable the user to perform stochastic variational inference in Bayesian deep neural networks. Bayesian-Torch is designed to be flexible and seamless in extending a deterministic deep neural network architecture to corresponding Bayesian form by simply replacing the deterministic layers with Bayesian layers.

Releases(v0.1.0)
  • v0.1.0(Feb 15, 2022)

    A few words…

    Если вы, как и я, уже устали писать что-то под API, имеющее rate limit на запросы, и постоянно делать костыли, чтобы этот rate limit не превысить, то эта библиотека именно для вас

    ralisem предоставляет две имплементации семафора с ограничением по частоте исполнения вместо ограничения по количеству исполняемых одновременно задач, что предоставляет стандартный asyncio.Semaphore. Одна из них ожидает равное количество времени между каждыми исполняемыми задачами, другая проверяет, чтобы 1 и последняя задача в серии имели заданный промежуток ожидания (прикрепил две лайв демки). Сделано на anyio, поэтому будет работать как на asyncio, так и на trio

    Да, будет заюзано в квике для ограничения частоты обращений к API (собственно, это и послужило поводом)

    Если кто подскажет, как на такое писать юнит тесты — буду рад (думал как-то через моки текущего времени, но жутко лень). Сейчас работает на честном слове

    Доки здесь не нужно, чисто пара слов в ридми. На PyPI залита

    Source code(tar.gz)
    Source code(zip)
Owner
Yan Kurbatov
Open Source and Back-End Python developer
Yan Kurbatov
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
《Geo Word Clouds》paper implementation

《Geo Word Clouds》paper implementation

Russellwzr 2 Jan 28, 2022
An elaborate and exhaustive paper list for Named Entity Recognition (NER)

Named-Entity-Recognition-NER-Papers by Pengfei Liu, Jinlan Fu and other contributors. An elaborate and exhaustive paper list for Named Entity Recognit

Pengfei Liu 388 Dec 18, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Many Class Activation Map methods implemented in Pytorch for CNNs and Vision Transformers. Including Grad-CAM, Grad-CAM++, Score-CAM, Ablation-CAM and XGrad-CAM

Class Activation Map methods implemented in Pytorch pip install grad-cam ⭐ Tested on many Common CNN Networks and Vision Transformers. ⭐ Includes smoo

Jacob Gildenblat 6.6k Jan 06, 2023
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
Automated Hyperparameter Optimization Competition

QQ浏览器2021AI算法大赛 - 自动超参数优化竞赛 ACM CIKM 2021 AnalyticCup 在信息流推荐业务场景中普遍存在模型或策略效果依赖于“超参数”的问题,而“超参数"的设定往往依赖人工经验调参,不仅效率低下维护成本高,而且难以实现更优效果。因此,本次赛题以超参数优化为主题,从真

20 Dec 09, 2021
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Urban mobility simulations with Python3, RLlib (Deep Reinforcement Learning) and Mesa (Agent-based modeling)

Deep Reinforcement Learning for Smart Cities Documentation RLlib: https://docs.ray.io/en/master/rllib.html Mesa: https://mesa.readthedocs.io/en/stable

1 May 15, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Certis - Certis, A High-Quality Backtesting Engine

Certis - Backtesting For y'all Certis is a powerful, lightweight, simple backtes

Yeachan-Heo 46 Oct 30, 2022
A Simple Key-Value Data-store written in Python

mercury-db This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python. The dat

Vaidhyanathan S M 1 Jan 09, 2022
The official implementation for "FQ-ViT: Fully Quantized Vision Transformer without Retraining".

FQ-ViT [arXiv] This repo contains the official implementation of "FQ-ViT: Fully Quantized Vision Transformer without Retraining". Table of Contents In

132 Jan 08, 2023