PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement."

Overview

FullSubNet

Platform Python version Pytorch Version GitHub repo size

This Git repository for the official PyTorch implementation of "A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement", submitted to ICASSP 2021.

🌼 See the demo page in this link.

workflow

fullsubnet_result

You can use all of these things:

  • Available models
    • FullSubNet
    • Delayed Sub-Band LSTM
    • Fullband LSTM Baseline
  • Available Datasets
    • Deep Noise Suppression Challenge - INTERSPEECH 2020
    • Demand + CSTR VCTK Corpus

Documentation

Citation

If you use this code for your research, please consider citing:

@misc{hao2020fullsubnet,
      title={FullSubNet: A Full-Band and Sub-Band Fusion Model for Real-Time Single-Channel Speech Enhancement}, 
      author={Xiang Hao and Xiangdong Su and Radu Horaud and Xiaofei Li},
      year={2020},
      eprint={2010.15508},
      archivePrefix={arXiv},
      primaryClass={eess.AS}
}

License

License: MIT

Comments
  • Will there be a 44.1 or 48kHz pre-trained model released?

    Will there be a 44.1 or 48kHz pre-trained model released?

    Hi guys! Your work is absolutely amazing and inspiring. Trying your model on data that was not on your datasets, it performed very well.

    I did have to convert to 16kHz first since as I understand, it was trained on 16kHz?

    My question is: will you guys release a 44.1kHz or 48kHz pre-trained model in the near future or not?

    While I could try my hand at training that model, I'm nowhere near experienced as you guys at this and feel that I'd miss so many things and would not be able to create a model that generalizes as well as you have, or maybe you can prove me wrong.

    opened by youssefavx 8
  • How to Use Pretrained, pickled model in Releases with No Documentation?

    How to Use Pretrained, pickled model in Releases with No Documentation?

    @haoxiangsnr Hi, it's already April and there still isn't any documentation for the pretrained model in releases. How do we go about using the pickled file data.pkl for inference? Thanks!

    opened by uwstudent123 3
  • Any plans about releasing the pretrained models?

    Any plans about releasing the pretrained models?

    First, thanks for the open-source implementation. I saw that the pretrained model is on your TO-DO list in the baseline readme. Do you have any plans for the releasing schedule? Thanks a lot!

    Type: Documentation Priority: Critical Status: In Progress 
    opened by 121898 3
  • [Question] The real-time speech enhance is poor, Need help!

    [Question] The real-time speech enhance is poor, Need help!

    At present, I have completed the modification of cumulative_laplace_norm, and then sent it to the network in batches through Stft for streaming inference, and obtained the Hidden state and cell state of the network. But the results are poor. I looked at the previous issue, you said that you need to replace LSTM with LSTMCell, what is the difference between the two? Why do you convert it? Pictures are as follow:

    • Fullwav_load:

    image

    • Stream_load:

    image

    Metrics: (My experiment)

    ... | NB_PESQ | WB_PESQ | SI_SDR | STOI -- | -- | -- | -- | -- FullSubNet-cum| Epoch 130 | 3.364 | 2.861 | 17.65 | 96.25 FullSubNet-cum-stream | | 3.155 | 2.466 | 14.77 | 94.30

    opened by Kayden-Wang 2
  • Training and Validation cRM Mismatch

    Training and Validation cRM Mismatch

    During training, with batch size 10, we observe the following shapes:

    cRM torch.Size([10, 128, 193, 2])
    noisy_real torch.Size([10, 257, 193])
    noisy_imag torch.Size([10, 257, 193])
    

    However, during validation, we see:

    cRM torch.Size([1, 257, 626, 2])
    noisy_real torch.Size([1, 257, 626])
    noisy_imag torch.Size([1, 257, 626])
    

    Why is dimension 1 and 2 of the cRM different during training but not during validation?

    Without these, I am unable to get the enhanced waveform during training, since this calculation fails:

    cRM = decompress_cIRM(cRM)
    
    enhanced_real = cRM[..., 0] * noisy_real - cRM[..., 1] * noisy_imag
    enhanced_imag = cRM[..., 1] * noisy_real + cRM[..., 0] * noisy_imag
    
    opened by jhkonan 2
  • Sub-band model

    Sub-band model

    Hi, thanks for sharing this excellent project. I took a great interest in the model(Delayed Sub-Band LSTM) posted in the paper. I've tried my hard to reproduce this model, but still can't get a well performance. Can you release the code about your sub-band models ? Thanks a lot!

    opened by HWLhsu 2
  • error !

    error !

    hi @haoxiangsnr, I run pre-training on Google Colab followed by this link: https://github.com/haoxiangsnr/FullSubNet/blob/main/docs/getting_started.md but I got an issue like this: command: !python inference.py -C /content/FullSubNet/recipes/dns_interspeech_2020/fullband_baseline/inference.toml -M /content/drive/MyDrive/Colab_Notebooks/FullSubNet/fullsubnet_best_model_58epochs.tar -O /content/drive/MyDrive/Colab_Notebooks/FullSubNet/output_dir result:

    Loading inference dataset... Loading model... Traceback (most recent call last): File "inference.py", line 32, in main(configuration, checkpoint_path, output_dir) File "inference.py", line 16, in main output_dir File "/content/FullSubNet/recipes/dns_interspeech_2020/inferencer.py", line 50, in init super().init(config, checkpoint_path, output_dir) File "/content/FullSubNet/audio_zen/inferencer/base_inferencer.py", line 27, in init self.model, epoch = self._load_model(config["model"], checkpoint_path, self.device) File "/content/FullSubNet/audio_zen/inferencer/base_inferencer.py", line 91, in _load_model model = initialize_module(model_config["path"], args=model_config["args"], initialize=True) File "/content/FullSubNet/audio_zen/utils.py", line 87, in initialize_module module = importlib.import_module(module_path) File "/usr/lib/python3.7/importlib/init.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "", line 1006, in _gcd_import File "", line 983, in _find_and_load File "", line 965, in _find_and_load_unlocked ModuleNotFoundError: No module named 'model'

    please help me a hand, thanks a lot

    opened by vinh1988 2
  • # of Epochs for training a FullBand baseline model

    # of Epochs for training a FullBand baseline model

    Hello,

    My question is about the training. I am just trying to replicate the results with the DNS challange dataset. The number of epochs for the fullband_baseline.toml file is set to 9999 which seems to be a "little" high :) Could you please shed some light on it ? Is this the default value ?

    Thank you for sharing your work.

    B.R.

    opened by kadir-gunel 2
  • Not an issue, but I wanted to show you some impressive results...

    Not an issue, but I wanted to show you some impressive results...

    Greetings! I have been helping restore an old (1980) recording of a recording of an interview with an elderly person relaying stories of the early history of the Baha'i Faith in the U.S.. I have surveyed and tried a number of machine learning methods to denoise and enhance the recording. I just finished processing with your FullSubNet today, and it far surpassed the other ones I tried out in removing the recording noise to make the voice easier to understand. Enclosed is a graphic of the comparison of the frequency spectograms of the 3 files where the top one is the original recording, the middle is the result of using another method (that was dozens of times slower than yours and principally dealt with white noise) and at the bottom is the result of FullSubNet using your pretrained checkpoint. The reduction in noise going from the original recording to what your method produced was astonishing! I can check to see if the archivist would allow me to provide the recordings (so if you are interested in getting them, please let me know). Thanks so much for making the code available here! Regards -Steve

    compare_orig_n2n_fullsubnet

    opened by sjscotti 2
  • The batch size for the validation stage must be one

    The batch size for the validation stage must be one

    Hi Hao Xiang

    I can't run the demo due to the limit that gpu usage must be over 20 percentage. Therefore, I found the validation set the batchsize

    must be one. Can I change the batchsize in validation?

    Hope your reply!

    opened by zc1616 2
  • Questions about the training process

    Questions about the training process

    Very interesting project. Thank you for sharing.

    I have a quastion - what are the text files noise.txt, rir.txt and clean_0.6.txt? Are they part of the original dataset or dedicated files that you've created for the training?

    Another qaustion - is it possible to run it on Windows run without the "dist" feature (using a single GPU)? (I mean after commecting all parts related to the 'dist')

    opened by ahikaml 2
  • 有关look-ahead的疑问

    有关look-ahead的疑问

    hi,我理解的look-ahead是使用多少未来帧,可是我在看您代码的过程中发现是在后面补两帧0,noisy_mag = F.pad(noisy_mag, [0, self.look_ahead]),最后只取第二帧之后的数据output = sb_mask[:, :, :, self.look_ahead:]

    是不是在推理的过程中,不需要补0,而是直接处理3帧,结果出一帧(output = sb_mask[:, :, :, self.look_ahead:])之后,然后流式的一帧进 一帧出

    opened by LXP-Never 0
  • Normalization

    Normalization

    Dear authors,

    I notice that in snr_mix, the signal dBFs will be [-35, -15], meaning the intensity can change randomly. However, in inference.py, normalization is applied, which is weird. From my understanding, we either normalize all data or don't normalize all data, but why do you choose to normalize it in inference while discarding it during training? Maybe I have some misunderstanding, please correct me if possible.

    Best

    opened by lixinghe1999 2
  • Unable to fine-tune pre-trained model (fullsubnet_best_model_58epochs.tar)

    Unable to fine-tune pre-trained model (fullsubnet_best_model_58epochs.tar)

    I am trying to continue training the pre-trained FullSubNet model provided by this repo:

    fullsubnet_best_model_58epochs.tar

    I can confirm the model works for inference. However, I run into issues loading the state dictionary for training based on how the model was saved.

    Here is the error in full:

    (FullSubNet) $ torchrun --standalone --nnodes=1 --nproc_per_node=1 train.py -C fullsubnet/train.toml -R
    1 process initialized.
    Traceback (most recent call last):
      File "/home/github/FullSubNet/recipes/dns_interspeech_2020/train.py", line 99, in <module>
        entry(local_rank, configuration, args.resume, args.only_validation)
      File "/home/github/FullSubNet/recipes/dns_interspeech_2020/train.py", line 59, in entry
        trainer = trainer_class(
      File "/home/github/FullSubNet/recipes/dns_interspeech_2020/fullsubnet/trainer.py", line 17, in __init__
        super().__init__(dist, rank, config, resume, only_validation, model, loss_function, optimizer)
      File "/home/github/FullSubNet/audio_zen/trainer/base_trainer.py", line 84, in __init__
        self._resume_checkpoint()
      File "/home/github/FullSubNet/audio_zen/trainer/base_trainer.py", line 153, in _resume_checkpoint
        self.scaler.load_state_dict(checkpoint["scaler"])
      File "/home/anaconda3/envs/FullSubNet/lib/python3.9/site-packages/torch/cuda/amp/grad_scaler.py", line 502, in load_state_dict
        raise RuntimeError("The source state dict is empty, possibly because it was saved "
    RuntimeError: The source state dict is empty, possibly because it was saved from a disabled instance of GradScaler.
    ERROR:torch.distributed.elastic.multiprocessing.api:failed (exitcode: 1) local_rank: 0 (pid: 1822537) of binary: /home/anaconda3/envs/FullSubNet/bin/python
    Traceback (most recent call last):
      File "/home/anaconda3/envs/FullSubNet/bin/torchrun", line 33, in <module>
        sys.exit(load_entry_point('torch==1.11.0', 'console_scripts', 'torchrun')())
      File "/home/anaconda3/envs/FullSubNet/lib/python3.9/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 345, in wrapper
        return f(*args, **kwargs)
      File "/home/anaconda3/envs/FullSubNet/lib/python3.9/site-packages/torch/distributed/run.py", line 724, in main
        run(args)
      File "/home/anaconda3/envs/FullSubNet/lib/python3.9/site-packages/torch/distributed/run.py", line 715, in run
        elastic_launch(
      File "/home/anaconda3/envs/FullSubNet/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 131, in __call__
        return launch_agent(self._config, self._entrypoint, list(args))
      File "/home/anaconda3/envs/FullSubNet/lib/python3.9/site-packages/torch/distributed/launcher/api.py", line 245, in launch_agent
        raise ChildFailedError(
    torch.distributed.elastic.multiprocessing.errors.ChildFailedError: 
    ============================================================
    train.py FAILED
    ------------------------------------------------------------
    Failures:
      <NO_OTHER_FAILURES>
    ------------------------------------------------------------
    Root Cause (first observed failure):
    [0]:
      time      : 2022-06-19_21:25:20
      host      : host-server
      rank      : 0 (local_rank: 0)
      exitcode  : 1 (pid: 1822537)
      error_file: <N/A>
      traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
    ============================================================
    
    

    Are there specific modifications that need to be made to continue training?

    Thank you for your help.

    opened by jhkonan 1
  • 仓库里模型比比赛时提交的结果好很多, 这个是有什么不同吗

    仓库里模型比比赛时提交的结果好很多, 这个是有什么不同吗

    您好, 我注意到FullSubNet 参加DNS2021 的成绩是在dev_testset MOS 3.06. https://www.microsoft.com/en-us/research/uploads/prod/2020/12/Challenge_Results.pdf

    但是我实际测试仓库的的模型, 指标是:3.44 ==> DNSMOS_SIG : 3.790972579288795 ==> DNSMOS_BAK : 4.130271822666175 ==> DNSMOS_OVR : 3.441530761341177

    请问是当时提交的模型与这里的不一样吗?

    感谢!

    opened by lhwcv 0
  • error

    error

    con somebody help me fix this

    command : python inference.py -C C:\Users\punnp\Desktop\FullSubNet\recipes\dns_interspeech_2020\fullsubnet/inference.toml -M C:\Users\punnp\Desktop\FullSubNet\model\fullsubnet_best_model_58epochs.tar -O C:\Users\punnp\Desktop\FullSubNet\output

    result : Traceback (most recent call last): File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 512, in loads multibackslash) File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 778, in load_line value, vtype = self.load_value(pair[1], strictly_valid) File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 880, in load_value return (self.load_array(v), "array") File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 1026, in load_array nval, ntype = self.load_value(a[i]) File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 866, in load_value raise ValueError("Reserved escape sequence used") ValueError: Reserved escape sequence used

    During handling of the above exception, another exception occurred:

    Traceback (most recent call last): File "inference.py", line 30, in configuration = toml.load(config_path.as_posix()) File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 134, in load return loads(ffile.read(), _dict, decoder) File "C:\Users\punnp\anaconda3\envs\FullSubNet\lib\site-packages\toml\decoder.py", line 514, in loads raise TomlDecodeError(str(err), original, pos) toml.decoder.TomlDecodeError: Reserved escape sequence used (line 20 column 1 char 241)

    opened by MisuyaXZ 0
Releases(v0.2)
  • v0.2(Jan 16, 2021)

    Checkpoints

    This page has two released model checkpoints. All checkpoints include "model_state_dict", "optimizer_state_dict", and some other meta information.

    The first model checkpoint is the original model checkpoint at the 58th epoch. The performance is shown in this table:

    | | With Reverb | | | | No Reverb | | | | |:----------:|:-----------:|:-------:|:------:|:-----:|:---------:|:-------:|:------:|:-----:| | Method | WB-PESQ | NB-PESQ | SI-SDR | STOI | WB-PESQ | NB-PESQ | SI-SDR | STOI | | FullSubNet | 2.987 | 3.496 | 15.756 | 0.926 | 2.889 | 3.385 | 17.635 | 0.964 |

    In addition, some people are interested in the performance when using cumulative normalization. The below one is a pre-trained FullSubNet using cumulative normalization:

    | | With Reverb | | | | No Reverb | | | | |:----------:|:-----------:|:-------:|:------:|:-----:|:---------:|:-------:|:------:|:-----:| | Method | WB-PESQ | NB-PESQ | SI-SDR | STOI | WB-PESQ | NB-PESQ | SI-SDR | STOI | |FullSubNet (Cumulative Norm)| 2.978| 3.503 | 15.820 | 0.928 | 2.863| 3.376 | 17.913 | 0.964 |

    If you want to inference or fine-tune based on these checkpoints, please check the usage in the documents.

    Room Impulse Responses

    As mentioned in the paper, the room impulse responses (RIRs) come from the Multichannel Impulse Response Database and the Reverb Challenge dataset. Please download the zip package "RIR (Multichannel Impulse Response Database + The REVERB challenge).zip" if you would like to retrain the FullSubNet.

    Note that the zip package includes a folder "rir" and a file "rir.txt." The folder "rir" contains all separated single-channel RIRs extracted from the above two datasets. The suffix (e.g., "m_") of the filename is the index of a microphone. The file "rir.txt" is just a path list of all RIRs. Please modify it to fit your case before you use it.

    For some cases, if you would like to extract channel by yourself, you can download these RIRs from pages:

    1. Multichannel Impulse Response Database: https://www.eng.biu.ac.il/~gannot/RIR_DATABASE/
    2. The REVERB challenge data: https://reverb2014.dereverberation.com/tools/reverb_tools_for_Generate_mcTrainData.tgz and https://reverb2014.dereverberation.com/tools/reverb_tools_for_Generate_SimData.tgz

    Enjoy ~

    Source code(tar.gz)
    Source code(zip)
    cum_fullsubnet_best_model_218epochs.tar(64.53 MB)
    fullsubnet_best_model_58epochs.tar(64.53 MB)
    RIR.Multichannel.Impulse.Response.Database.+.The.REVERB.challenge.zip(10.68 MB)
Owner
郝翔
Audio/Speech Signal Processing
郝翔
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
Example of a Quantum LSTM

Example of a Quantum LSTM

Riccardo Di Sipio 36 Oct 31, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
CVNets: A library for training computer vision networks

CVNets: A library for training computer vision networks This repository contains the source code for training computer vision models. Specifically, it

Apple 1.1k Jan 03, 2023
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Fang Zhonghao 13 Nov 19, 2022
A deep neural networks for images using CNN algorithm.

Example-CNN-Project This is a simple project showing how to implement deep neural networks using CNN algorithm. The dataset is taken from this link: h

Mohammad Amin Dadgar 3 Sep 16, 2022