Exploiting Robust Unsupervised Video Person Re-identification

Related tags

Deep LearninguPMnet
Overview

Exploiting Robust Unsupervised Video Person Re-identification

LICENSE Python tensorflow

Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv].

PWC PWC PWC

framework

Getting Started

Requirements

Here is a brief instruction for installing the experimental environment.

# install virtual envs
$ conda create -n uPMnet python=2.7 -y
$ conda activate uPMnet

# install tensorflow 1.4.0 with cuda 9.0
$ pip install --ignore-installed --upgrade https://github.com/mind/wheels/releases/download/tf1.4-gpu-cuda9/tensorflow-1.4.0-cp27-cp27mu-linux_x86_64.whl

# install mkl
$ sudo apt install cmake
$ git clone --branch v0.12 https://github.com/01org/mkl-dnn.git
$ cd mkl-dnn/scripts; ./prepare_mkl.sh && cd ..
$ mkdir -p build && cd build && cmake .. && make -j36
$ sudo make install
$ echo 'export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib' >> ~/.bashrc

# install other dependencies
$ pip install scipy matplotlib

Convert benchmarks to tfrecords

# Please modify the path in your way
$ bash datasets/convert_data_to_tfrecords.py

Download pre-trained models

The Mobilenet and Resnet models can be downloaded in this link (code: 1upx) and should be put in the checkpoints directory.

Training and Extracting features

$ bash scripts/train_PRID2011.sh # train_iLIDS_VID.sh or train_DukeMTMC-VideoReID.sh

Testing

Use the Matlab to run the following files, evaluation/CMC_PRID2011.m, evaluation/CMC_iLIDS-VID.m, and evaluation/CMC_DukeMTMC_VideoReID.m.

Results in the Paper

The results of PRID2011, iLIDS-VID, and DukeMTMC-VideoReID are provided.

Model [email protected] [email protected] [email protected]
uPMnet 92.0 link (code: xa7z) 63.1 link (code: le2c) 83.6 link (code: e9ja)

You can download these results and put them in the results directory. Then use Matlab to evaluate them.

Acknowledgement

This repository is built upon the repository DAL.

Citation

If you find this project useful for your research, please kindly cite:

@article{zang2021exploiting,
  title={Exploiting Robust Unsupervised Video Person Re-identification},
  author={Zang, Xianghao and Li, Ge and Gao, Wei and Shu, Xiujun},
  journal={arXiv preprint arXiv:2111.05170},
  year={2021}
}

License

This repository is released under the GPL-2.0 License as found in the LICENSE file.

Forecasting with Gradient Boosted Time Series Decomposition

ThymeBoost ThymeBoost combines time series decomposition with gradient boosting to provide a flexible mix-and-match time series framework for spicy fo

131 Jan 08, 2023
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
An LSTM based GAN for Human motion synthesis

GAN-motion-Prediction An LSTM based GAN for motion synthesis has a few issues reading H3.6M data from A.Jain et al , will fix soon. Prediction of the

Amogh Adishesha 9 Jun 17, 2022
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
A web-based application for quick, scalable, and automated hyperparameter tuning and stacked ensembling in Python.

Xcessiv Xcessiv is a tool to help you create the biggest, craziest, and most excessive stacked ensembles you can think of. Stacked ensembles are simpl

Reiichiro Nakano 1.3k Nov 17, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification

Companion code for the paper Theoretical characterization of uncertainty in high-dimensional linear classification Usage The required packages are lis

0 Feb 07, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
NLU Dataset Diagnostics

NLU Dataset Diagnostics This repository contains data and scripts to reproduce the results from our paper: Aarne Talman, Marianna Apidianaki, Stergios

Language Technology at the University of Helsinki 1 Jul 20, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
Use your Philips Hue lights as Racing Flags. Works with Assetto Corsa, Assetto Corsa Competizione and iRacing.

phue-racing-flags Use your Philips Hue lights as Racing Flags. Explore the docs » Report Bug · Request Feature Table of Contents About The Project Bui

50 Sep 03, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Minimal PyTorch implementation of Generative Latent Optimization from the paper "Optimizing the Latent Space of Generative Networks"

Minimal PyTorch implementation of Generative Latent Optimization This is a reimplementation of the paper Piotr Bojanowski, Armand Joulin, David Lopez-

Thomas Neumann 117 Nov 27, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022