This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Related tags

Deep Learningparm
Overview

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval

This repository contains the code for the paper PARM: A Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval and is partly based on the DPR Github repository. PARM is a Paragraph Aggregation Retrieval Model for dense document-to-document retrieval tasks, which liberates dense passage retrieval models from their limited input lenght and does retrieval on the paragraph-level.

We focus on the task of legal case retrieval and train and evaluate our models on the COLIEE 2021 data and evaluate our models on the CaseLaw collection.

The dense retrieval models are trained on the COLIEE data and can be found here. For training the dense retrieval model we utilize the DPR Github repository.

PARM Workflow

If you use our models or code, please cite our work:

@inproceedings{althammer2022parm,
      title={Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval}, 
      author={Althammer, Sophia and Hofstätter, Sebastian and Sertkan, Mete and Verberne, Suzan and Hanbury, Allan},
      year={2022},
      booktitle={Advances in Information Retrieval, 44rd European Conference on IR Research, ECIR 2022},
}

Training the dense retrieval model

The dense retrieval models need to be trained, either on the paragraph-level data of COLIEE Task2 or additionally on the document-level data of COLIEE Task1

  • ./DPR/train_dense_encoder.py: trains the dense bi-encoder (Step1)
python -m torch.distributed.launch --nproc_per_node=2 train_dense_encoder.py 
--max_grad_norm 2.0 
--encoder_model_type hf_bert 
--checkpoint_file_name --insert path to pretrained encoder checkpoint here if available-- 
--model_file  --insert path to pretrained chechpoint here if available-- 
--seed 12345 
--sequence_length 256 
--warmup_steps 1237 
--batch_size 22 
--do_lower_case 
--train_file --path to json train file-- 
--dev_file --path to json val file-- 
--output_dir --path to output directory--
--learning_rate 1e-05
--num_train_epochs 70
--dev_batch_size 22
--val_av_rank_start_epoch 60
--eval_per_epoch 1
--global_loss_buf_sz 250000

Generate dense embeddings index with trained DPR model

  • ./DPR/generate_dense_embeddings.py: encodes the corpus in the dense index (Step2)
python generate_dense_embeddings.py
--model_file --insert path to pretrained checkpoint here from Step1--
--pretrained_file  --insert path to pretrained chechpoint here from Step1--
--ctx_file --insert path to tsv file with documents in the corpus--
--out_file --insert path to output index--
--batch_size 750

Search in the dense index

  • ./DPR/dense_retriever.py: searches in the dense index the top n-docs (Step3)
python dense_retriever.py 
--model_file --insert path to pretrained checkpoint here from Step1--
--ctx_file --insert path to tsv file with documents in the corpus--
--qa_file --insert path to csv file with the queries--
--encoded_ctx_file --path to the dense index (.pkl format) from Step2--
--out_file --path to .json output file for search results--
--n-docs 1000

Poolout dense vectors for aggregation step

First you need to get the dense embeddings for the query paragraphs:

  • ./DPR/get_question_tensors.py: encodes the query paragraphs with the dense encoder checkpoint and stores the embeddings in the output file (Step4)
python get_question_tensors.py
--model_file --insert path to pretrained checkpoint here from Step1--
--qa_file --insert path to csv file with the queries--
--out_file --path to output file for output index--

Once you have the dense embeddings of the paragraphs in the index and of the questions, you do the vector-based aggregation step in PARM with VRRF (alternatively with Min, Max, Avg, Sum, VScores, VRanks) and evaluate the aggregated results

  • ./representation_aggregation.py: aggregates the run, stores and evaluates the aggregated run (Step5)
python representation_aggregation.py
--encoded_ctx_file --path to the encoded index (.pkl format) from Step2--
--encoded_qa_file  --path to the encoded queries (.pkl format) from Step4--
--output_top1000s --path to the top-n file (.json format) from Step3--
--label_file  --path to the label file (.json format)--
--aggregation_mode --choose from vrrf/vscores/vranks/sum/max/min/avg
--candidate_mode p_from_retrieved_list
--output_dir --path to output directory--
--output_file_name  --output file name--

Preprocessing

Preprocess COLIEE Task 1 data for dense retrieval

  • ./preprocessing/preprocess_coliee_2021_task1.py: preprocess the COLIEE Task 1 dataset by removing non-English text, removing non-informative summaries, removing tabs etc

Preprocess CaseLaw collection

  • ./preprocessing/caselaw_stat_corpus.py: preprocess the CaseLaw collection

Preprocess data for training the dense retrieval model

In order to train the dense retrieval models, the data needs to be preprocessed. For training and retrieval we split up the documents into their paragraphs.

  • ./preprocessing/preprocess_finetune_data_dpr_task1.py: preprocess the COLIEE Task 1 document-level labels for training the DPR model

  • ./preprocessing/preprocess_finetune_data_dpr.py: preprocess the COLIEE Task 2 paragraph-level labels for training the DPR model

Owner
Sophia Althammer
PhD student @TuVienna Interested in IR and NLP https://sophiaalthammer.github.io/ Currently working on the dossier project to https://dossier-project.eu/
Sophia Althammer
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Reading Group @mila-iqia on Computational Optimal Transport for Machine Learning Applications

Computational Optimal Transport for Machine Learning Reading Group Over the last few years, optimal transport (OT) has quickly become a central topic

Ali Harakeh 11 Aug 26, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs

Generalized Matrix Means for Semi-Supervised Learning with Multilayer Graphs MATLAB implementation of the paper: P. Mercado, F. Tudisco, and M. Hein,

Pedro Mercado 6 May 26, 2022
TDmatch is a Python library developed to perform matching tasks in three categories:

TDmatch TDmatch is a Python library developed to perform matching tasks in three categories: Text to Data which matches tuples of a table to text docu

Naser Ahmadi 5 Aug 11, 2022
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Sign Language Translation with Transformers (COLING'2020, ECCV'20 SLRTP Workshop)

transformer-slt This repository gathers data and code supporting the experiments in the paper Better Sign Language Translation with STMC-Transformer.

Kayo Yin 107 Dec 27, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Official repository with code and data accompanying the NAACL 2021 paper "Hurdles to Progress in Long-form Question Answering" (https://arxiv.org/abs/2103.06332).

Hurdles to Progress in Long-form Question Answering This repository contains the official scripts and datasets accompanying our NAACL 2021 paper, "Hur

Kalpesh Krishna 41 Nov 08, 2022