Official PyTorch implementation of BlobGAN: Spatially Disentangled Scene Representations

Related tags

Deep Learningblobgan
Overview

BlobGAN: Spatially Disentangled Scene Representations
Official PyTorch Implementation

Paper | Project Page | Video | Interactive Demo Open in Colab

BlobGAN.mp4

This repository contains:

  • 🚂 Pre-trained BlobGAN models on three datasets: bedrooms, conference rooms, and a combination of kitchens, living rooms, and dining rooms
  • 💻 Code based on PyTorch Lightning and Hydra 🐍 which fully supports CPU, single GPU, or multi GPU/node training and inference

We also provide an 📓 interactive demo notebook to help get started using our model. Download this notebook and run it on your own Python environment, or test it out on Colab. You can:

  • 🖌️ ️ Generate and edit realistic images with an interactive UI
  • 📹 Create animated videos showing off your edited scenes

And, coming soon!

  • 📸 Upload your own image and convert it into blobs!
  • 🧬 Programmatically modify images and reproduce results from our paper

Setup

Run the commands below one at a time to download the latest version of the BlobGAN code, create a Conda environment, and install necessary packages and utilities.

git clone https://github.com/dave-epstein/blobgan.git
mkdir -p blobgan/logs/wandb
conda create -n blobgan python=3.9
conda activate blobgan
conda install pytorch=1.11.0 torchvision=0.12.0 torchaudio cudatoolkit=11.3 -c pytorch
conda install cudatoolkit-dev=11.3 -c conda-forge
pip install tqdm==4.64.0 hydra-core==1.1.2 omegaconf==2.1.2 clean-fid==0.1.23 wandb==0.12.11 ipdb==0.13.9 lpips==0.1.4 einops==0.4.1 inputimeout==1.0.4 pytorch-lightning==1.5.10 matplotlib==3.5.2 mpl_interactions[jupyter]==0.21.0
wget -q --show-progress https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip
sudo unzip -q ninja-linux.zip -d /usr/local/bin/
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force

Running pretrained models

See scripts/load_model.py for an example of how to load a pre-trained model (using the provided load_model function, which can be called from elsewhere) and generate images with it. You can also run the file from the command line to generate images and save them to disk. For example:

python scripts/load_model.py --model_name bed --dl_dir models --save_dir out --n_imgs 32 --save_blobs --label_blobs

See the command's help for more details and options: scripts/load_model.py --help

Training your own model

Before training your model, you'll need to modify src/configs/experiments/local.yaml to include your WandB information and machine-specific configuration (such as path to data -- dataset.path or dataset.basepath -- and number of GPUs trainer.gpus). To turn off logging entirely, pass logger=false, or to only log to disk but not write to server, pass wandb.offline=true. Our code currently only supports WandB logging.

Here's an example command which will train a model on LSUN bedrooms. We list the configuration modules to load for this experiment (blobgan, local, jitter) and then specify any other options as we desire. For example, if we wanted to train a model without jitter, we could just remove that module from the experiments array.

python src/run.py +experiment=[blobgan,local,jitter] wandb.name='10-blob BlobGAN on bedrooms'

In some shells, you may need to add extra quotes around some of these options to prevent them from being parsed immediately on the command line.

Train on the LSUN category of your choice by passing in dataset.category, e.g. dataset.category=church. Tackle multiple categories at once with dataset=multilsun and dataset.categories=[kitchen,bedroom].

You can also train on any collection of images by selecting dataset=imagefolder and passing in the path. The code expects at least a subfolder named train and optional subfolders named validate and test. The below command also illustrates how to set arbitrary options using Hydra syntax, such as turning off FID logging or changing dataloader batch size:

python src/run.py +experiment=[blobgan,local,jitter] wandb.name='20-blob BlobGAN on Places' dataset.dataloader.batch_size=24 +model.log_fid_every_epoch=false dataset=imagefolder +dataset.path=/path/to/places/ model.n_features=20

Other parameters of interest are likely trainer.log_every_n_steps and model.log_images_every_n_steps which control frequency of logging scalars and images, and checkpoint.every_n_train_steps and checkpoint.save_top_k which dictate checkpoint saving frequency and decide how many most recent checkpoints to keep (-1 means keep everything).

Citation

If our code or models aided your research, please cite our paper:

@misc{epstein2022blobgan,
      title={BlobGAN: Spatially Disentangled Scene Representations},
      author={Dave Epstein and Taesung Park and Richard Zhang and Eli Shechtman and Alexei A. Efros},
      year={2022},
      eprint={2205.02837},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}		

Code acknowledgments

This repository is built on top of rosinality's excellent PyTorch re-implementation of StyleGAN2 and Bill Peebles' GANgealing codebase.

Owner
PhD student at UC Berkeley
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
The Official Implementation of the ICCV-2021 Paper: Semantically Coherent Out-of-Distribution Detection.

SCOOD-UDG (ICCV 2021) This repository is the official implementation of the paper: Semantically Coherent Out-of-Distribution Detection Jingkang Yang,

Jake YANG 62 Nov 21, 2022
The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store development.

The goal of the exercises below is to evaluate the candidate knowledge and problem solving expertise regarding the main development focuses for the iFood ML Platform team: MLOps and Feature Store dev

George Rocha 0 Feb 03, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020

UnpairedSR An unofficial implementation of "Unpaired Image Super-Resolution using Pseudo-Supervision." CVPR2020 turn RCAN(modified) -- xmodel(xilinx

JiaKui Hu 10 Oct 28, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
A PyTorch version of You Only Look at One-level Feature object detector

PyTorch_YOLOF A PyTorch version of You Only Look at One-level Feature object detector. The input image must be resized to have their shorter side bein

Jianhua Yang 25 Dec 30, 2022
Code for BMVC2021 "MOS: A Low Latency and Lightweight Framework for Face Detection, Landmark Localization, and Head Pose Estimation"

MOS-Multi-Task-Face-Detect Introduction This repo is the official implementation of "MOS: A Low Latency and Lightweight Framework for Face Detection,

104 Dec 08, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Reference-based Video Super-Resolution (RefVSR) Official PyTorch Implementation of the CVPR 2022 Paper Project | arXiv | RealMCVSR Dataset This repo c

Junyong Lee 151 Dec 30, 2022