Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Overview

Avatarify Python

Photorealistic avatars for video-conferencing.

Avatarify Python requires manually downloading and installing some dependencies, and is therefore best suited for users who have some experience with command line applications. Avatarify Desktop, which aims to be easier to install and use, is recommended for most users. If you still want to use Avatarify Python, proceed to the install instructions.

Based on First Order Motion Model.

Avatarify Python is not affiliated with Avatarify Inc.

News

  • 7 Mar 2021. Renamed project to Avatarify Python to distinguish it from other versions of Avatarify
  • 14 December 2020. Released Avatarify Desktop. Check it out here.
  • 11 July 2020. Added Docker support. Now you can run Avatarify from Docker on Linux. Thanks to mikaelhg and mintmaker for contribution!
  • 22 May 2020. Added Google Colab mode. Now you can run Avatarify on any computer without GPU!
  • 7 May 2020. Added remote GPU support for all platforms (based on mynameisfiber's solution). Demo. Deployment instructions.
  • 24 April 2020. Added Windows installation tutorial.
  • 17 April 2020. Created Slack community. Please join via invitation link.
  • 15 April 2020. Added StyleGAN-generated avatars. Just press Q and now you drive a person that never existed. Every time you push the button – new avatar is sampled.
  • 13 April 2020. Added Windows support (kudos to 9of9).
Comments
  • Dockerize the

    Dockerize the "Remote GPU" service

    This PR needs some testing before merging, so I'm creating it as a draft.

    Based on my previous contribution to AliaksandrSiarohin/first-order-model#55.

    Building

    docker build -t avatarify .
    

    Running

    docker run -it --rm --gpus=all -p 5557:5557 -p 5558:5558 avatarify
    
    opened by mikaelhg 47
  • Broken pipe

    Broken pipe

    ffmpeg version 4.1.4-1build2 Copyright (c) 2000-2019 the FFmpeg developers
      built with gcc 9 (Ubuntu 9.2.1-4ubuntu1)
      configuration: --prefix=/usr --extra-version=1build2 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-avresample --disable-filter=resample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librsvg --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-shared
      libavutil      56. 22.100 / 56. 22.100
      libavcodec     58. 35.100 / 58. 35.100
      libavformat    58. 20.100 / 58. 20.100
      libavdevice    58.  5.100 / 58.  5.100
      libavfilter     7. 40.101 /  7. 40.101
      libavresample   4.  0.  0 /  4.  0.  0
      libswscale      5.  3.100 /  5.  3.100
      libswresample   3.  3.100 /  3.  3.100
      libpostproc    55.  3.100 / 55.  3.100
    0: ./avatars/mona.jpg
    cam_fomm.py:26: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
      config = yaml.load(f)
    [mjpeg @ 0x561a4d0f8a00] Format mjpeg detected only with low score of 25, misdetection possible!
    Input #0, mjpeg, from 'pipe:0':                                                                                                                           
      Duration: N/A, bitrate: N/A
        Stream #0:0: Video: mjpeg, yuvj420p(pc, bt470bg/unknown/unknown), 640x480 [SAR 1:1 DAR 4:3], 25 tbr, 1200k tbn, 25 tbc
    Stream mapping:
      Stream #0:0 -> #0:0 (mjpeg (native) -> rawvideo (native))
    [swscaler @ 0x561a4d153040] deprecated pixel format used, make sure you did set range correctly
    [video4linux2,v4l2 @ 0x561a4d0fe680] ioctl(VIDIOC_G_FMT): Invalid argument                                                                                
    Could not write header for output file #0 (incorrect codec parameters ?): Invalid argument                                                                
    Error initializing output stream 0:0 --                                                                                                                   
    Conversion failed!                                                                                                                                        
    Traceback (most recent call last):
      File "cam_fomm.py", line 173, in <module>
        sys.stdout.buffer.write(buf)
    BrokenPipeError: [Errno 32] Broken pipe
    Exception ignored in: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
    BrokenPipeError: [Errno 32] Broken pipe
    
    opened by zuenko 42
  • Error when run

    Error when run "bash run.sh"

    Hi,

    I pull the last commit, executed again the install.sh and tryed run:

    bash run.sh

    But this error occours:

    (avatarify) [email protected]:~/Repository/others/avatarify$ bash run.sh 0: ./avatars/einstein.jpg 1: ./avatars/eminem.jpg 2: ./avatars/jobs.jpg 3: ./avatars/mona.jpg 4: ./avatars/obama.jpg 5: ./avatars/potter.jpg 6: ./avatars/ronaldo.png 7: ./avatars/schwarzenegger.png load checkpoints.. cam_fomm.py:34: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details. config = yaml.load(f) Traceback (most recent call last): File "cam_fomm.py", line 231, in stream = pyfakewebcam.FakeWebcam(f'/dev/video{opt.virt_cam}', frame.shape[1], frame.shape[0]) File "/home/eltonnunes/.conda/envs/avatarify/lib/python3.8/site-packages/pyfakewebcam/pyfakewebcam.py", line 54, in init fcntl.ioctl(self._video_device, _v4l2.VIDIOC_S_FMT, self._settings) OSError: [Errno 22] Invalid argument

    Anyone can help ?

    My OS: Linux Mint 19.3 Cinnamon

    opened by eltonnuness 27
  • When run_windows.bat is finished, the two windows do not pop up. (avatarify does not launch)

    When run_windows.bat is finished, the two windows do not pop up. (avatarify does not launch)

    Describe the bug

    To Reproduce

    Info (please complete the following information):

    • OS (e.g., Linux):
    • GPU model:
    • Any other relevant information:

    Screenshots

    Logs

    duplicate 
    opened by board808 19
  • Getting multiple cam windows opened while running run.sh

    Getting multiple cam windows opened while running run.sh

    I am on latest Ubuntu I have installed correctly and updated everything but when I run bash run.sh then it didn't. Run so I run with sudo bash run.sh but so it sometime shows me avatar list to select and sometimes it open webcam and when I press X and configure my face than multiple cam windows start opening and I can't understand what's the issue and how to fix it please help me out

    opened by shwetkanwal24 19
  • Error with run_windows.bat

    Error with run_windows.bat

    RuntimeError: CUDA error: no kernel image is available for execution on the device

    I have a Windows 10 machine with Nvidia GTX Titan card. Nvidia says it supports CUDA 3.5 which I think is the minimum required?

    Also I read in the notes that it should fall to the CPU if the GPU isn't supported? How would I configure that if the card is the problem?

    opened by virtualmonster 17
  • No module named 'sync_batchnorm'

    No module named 'sync_batchnorm'

    Windows 10 system.

    Traceback (most recent call last): File "cam_fomm.py", line 13, in from sync_batchnorm import DataParallelWithCallback ModuleNotFoundError: No module named 'sync_batchnorm'

    opened by newtonke 17
  • Add overlay drawing of landmarks

    Add overlay drawing of landmarks

    Seeing the landmarks of both the current frame and the avatar can make it easier to get a good pose. I also thought it was interesting to expose a little of the underlying techniques

    opened by JohanAR 16
  • How to find the IP address of Google Colab Notebook

    How to find the IP address of Google Colab Notebook

    Hi, I want to run avatarify on macOS, but I need to use google colab... How do I find the IP address of the notebook so I can connect to the server? I tried to put the !curl ipecho.net/plain command in the notebook and I received an IP, but when I use this IP, the terminal is stuck on Receiving from.

    This is the google colab command:

    google_colab_command

    and this is what I see in the terminal: terminal

    opened by tvtr04 16
  • DLL load failed: The specified module could not be found.

    DLL load failed: The specified module could not be found.

    Error when running run_windows.bat

    File "cam_fomm.py", line 11, in import cv2 ImportError: DLL load failed: The specified module could not be found.

    Tried to install different opencv libraries to no avail. Any ideas how to solve this?

    more info needed 
    opened by kratadata 16
  • ModuleNotFoundError: No module named 'yaml'

    ModuleNotFoundError: No module named 'yaml'

    (base) E:\avatarify>run_windows.bat --is-client --in-addr tcp://2.tcp.eu.ngrok.io:10176 --out-addr tcp://0.tcp.eu.ngrok.io:12257 Traceback (most recent call last): File "afy/cam_fomm.py", line 4, in import yaml ModuleNotFoundError: No module named 'yaml'

    opened by fazelukario 15
  • Corrupt vox-adv-cpk.pth.tar

    Corrupt vox-adv-cpk.pth.tar

    Describe the bug

    initially the tar file has a 3 textbook icon but whenever I download it now it shows a regular file icon and that is the problem. Even if you move it into the right directory it’s still gonna show file not found

    Info (please complete the following information):

    • OS (windows 10 home):
    • GPU model: GeForce 1660 ti,windows 10 home, 6gb graphics
    • Any other relevant information:

    Screenshots

    Logs

    opened by Denvercraig 3
  • TROUBLE RUNNING AVATARIFY ON COLAB SERVER FOR MAC

    TROUBLE RUNNING AVATARIFY ON COLAB SERVER FOR MAC

    Hello guys, I really need a bit of help running Avatarify on the Google Colab server since I use a Mac. I already have Miniconda and unpacked the repositories in the Avatarify Folder. I was following the steps for running on google collab, everything was going just about right until the "start the worker" section of the code. Can anyone advise on what to do. I have a screenshot of th result attached to thisScreen Shot 2022-12-29 at 11 04 52 AM

    cloud gpu 
    opened by oveentheproduza 0
  • Avatar folder missing after forced shutdown

    Avatar folder missing after forced shutdown

    Laptop shutdown due to overheating, now I open avatarify.... it’s working fine but I can’t find the avatar folder to add new model or remove existing ones. I’ve search every where but nothing. Pls help.

    opened by Twabor 1
  • Python avatarify

    Python avatarify

    I have a problem, after I give the git clone command and equip it using the cd avatarify python command, I try to compile with the other command and this error returns me "avatarify python failed solving environment",what i do?

    opened by Bitchlinux 0
  • Error any time I try to run windows.bat

    Error any time I try to run windows.bat

    option --use-feature: invalid choice: '2020-resolver' (choose from "fast-deps', 'truststor che')

    I tried installing from scratch as I always does that work fine but now when I try ruining the scripts.windows.bat it gives me this at the end process

    opened by mandontsmile 11
Releases(v0.2.0)
Owner
Ali Aliev
Computer graphics
Ali Aliev
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

32 Dec 26, 2022
Scaling and Benchmarking Self-Supervised Visual Representation Learning

FAIR Self-Supervision Benchmark is deprecated. Please see VISSL, a ground-up rewrite of benchmark in PyTorch. FAIR Self-Supervision Benchmark This cod

Meta Research 584 Dec 31, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
A tool to prepare websites grabbed with wget for local viewing.

makelocal A tool to prepare websites grabbed with wget for local viewing. exapmples After fetching xkcd.com with: wget -r -no-remove-listing -r -N --p

5 Apr 23, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
PFLD pytorch Implementation

PFLD-pytorch Implementation of PFLD A Practical Facial Landmark Detector by pytorch. 1. install requirements pip3 install -r requirements.txt 2. Datas

zhaozhichao 669 Jan 02, 2023
[CVPR'20] TTSR: Learning Texture Transformer Network for Image Super-Resolution

TTSR Official PyTorch implementation of the paper Learning Texture Transformer Network for Image Super-Resolution accepted in CVPR 2020. Contents Intr

Multimedia Research 689 Dec 28, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Fast and robust clustering of point clouds generated with a Velodyne sensor.

Depth Clustering This is a fast and robust algorithm to segment point clouds taken with Velodyne sensor into objects. It works with all available Velo

Photogrammetry & Robotics Bonn 957 Dec 21, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022