Deep Learning for Natural Language Processing - Lectures 2021

Overview

Deep Learning for Natural Language Processing - Lectures 2021

This repository contains slides for the course "20-00-0947: Deep Learning for Natural Language Processing" (Technical University of Darmstadt, Summer term 2021).

This online course is taught by Ivan Habernal and Mohsen Mesgar.

The slides are available as PDF as well as LaTeX source code (we've used Beamer because typesetting mathematics in PowerPoint or similar tools is painful)

Logo

The content is licenced under Creative Commons CC BY-SA 4.0 which means that you can re-use, adapt, modify, or publish it further, provided you keep the license and give proper credits.

Accompanying video lectures are linked on YouTube

Lecture 1

Lecture 2

Lecture 3

Lecture 4

Lecture 5

  • Topics: Bilingual and Syntax-Based Word Embeddings
  • Slides as PDF
  • YouTube video
  • Mandatory reading
    • Upadhyay, S., Faruqui, M., Dyer, C., & Roth, D. (2016). Cross-lingual Models of Word Embeddings: An Empirical Comparison. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 1661–1670. https://doi.org/10.18653/v1/P16-1157

Lecture 6

  • Topics: Convolutional Neural Networks
  • Slides as PDF
  • YouTube video
  • Mandatory reading
    • Madasu, A., & Anvesh Rao, V. (2019). Sequential Learning of Convolutional Features for Effective Text Classification. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 5657–5666. https://doi.org/10.18653/v1/D19-1567

Lecture 7

Lecture 8

Lecture 9

  • Topics: Transformer architectures and BERT
  • Slides as PDF
  • YouTube video
  • Mandatory reading
    • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186. https://doi.org/10.18653/v1/N19-1423

Lecture 10

Lecture 11

Compiling slides to PDF

If you run a linux distribution (e.g, Ubuntu 20.04 and newer), all packages are provided as part of texlive. Install the following packages

$ sudo apt-get install texlive-latex-recommended texlive-pictures texlive-latex-extra \
texlive-fonts-extra texlive-bibtex-extra texlive-humanities texlive-science \
texlive-luatex biber wget -y

Install Fira Sans fonts required by the beamer template locally

$ wget https://github.com/mozilla/Fira/archive/refs/tags/4.106.zip -O 4.106.zip \
&& unzip -o 4.106.zip && mkdir -p ~/.fonts/FiraSans && cp Fira-4.106/otf/Fira* \
~/.fonts/FiraSans/ && rm -rf Fira-4.106 && rm 4.106.zip && fc-cache -f -v && mktexlsr

Compile each lecture's slides using lualatex

$ lualatex dl4nlp2021-lecture*.tex && biber dl4nlp2021-lecture*.bcf && \
lualatex dl4nlp2021-lecture*.tex && lualatex dl4nlp2021-lecture*.tex

Compiling slides using Docker

If you don't run a linux system or don't want to mess up your latex packages, I've tested compiling the slides in a Docker.

Install Docker ( https://docs.docker.com/engine/install/ )

Create a folder to which you clone this repository (for example, $ mkdir -p /tmp/slides)

Run Docker with Ubuntu 20.04 interactively; mount your slides directory under /mnt in this Docker container

$ docker run -it --rm --mount type=bind,source=/tmp/slides,target=/mnt \
ubuntu:20.04 /bin/bash

Once the container is running, update, install packages and fonts as above

# apt-get update && apt-get dist-upgrade -y && apt-get install texlive-latex-recommended \
texlive-pictures texlive-latex-extra texlive-fonts-extra texlive-bibtex-extra \
texlive-humanities texlive-science texlive-luatex biber wget -y

Fonts

# wget https://github.com/mozilla/Fira/archive/refs/tags/4.106.zip -O 4.106.zip \
&& unzip -o 4.106.zip && mkdir -p ~/.fonts/FiraSans && cp Fira-4.106/otf/Fira* \
~/.fonts/FiraSans/ && rm -rf Fira-4.106 && rm 4.106.zip && fc-cache -f -v && mktexlsr

And compile

# cd /mnt/dl4nlp/latex/lecture01
# lualatex dl4nlp2021-lecture*.tex && biber dl4nlp2021-lecture*.bcf && \
lualatex dl4nlp2021-lecture*.tex && lualatex dl4nlp2021-lecture*.tex

which generates the PDF in your local folder (e.g, /tmp/slides).

Various Algorithms for Short Text Mining

Short Text Mining in Python Introduction This package shorttext is a Python package that facilitates supervised and unsupervised learning for short te

Kwan-Yuet 466 Dec 06, 2022
Findings of ACL 2021

Assessing Dialogue Systems with Distribution Distances [arXiv][code] We propose to measure the performance of a dialogue system by computing the distr

Yahui Liu 16 Feb 24, 2022
Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing

Introduction Funnel-Transformer is a new self-attention model that gradually compresses the sequence of hidden states to a shorter one and hence reduc

GUOKUN LAI 197 Dec 11, 2022
This is a modification of the OpenAI-CLIP repository of moein-shariatnia

This is a modification of the OpenAI-CLIP repository of moein-shariatnia

Sangwon Beak 2 Mar 04, 2022
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

EBUS Coding Club 0 Apr 09, 2022
Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification"

PTR Code and datasets for our paper "PTR: Prompt Tuning with Rules for Text Classification" If you use the code, please cite the following paper: @art

THUNLP 118 Dec 30, 2022
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis

YangHeng 567 Jan 07, 2023
Research code for "What to Pre-Train on? Efficient Intermediate Task Selection", EMNLP 2021

efficient-task-transfer This repository contains code for the experiments in our paper "What to Pre-Train on? Efficient Intermediate Task Selection".

AdapterHub 26 Dec 24, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Two-stage text summarization with BERT and BART

Two-Stage Text Summarization Description We experiment with a 2-stage summarization model on CNN/DailyMail dataset that combines the ability to filter

Yukai Yang (Alexis) 6 Oct 22, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

Justin Terry 32 Nov 09, 2021
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 A repository part of the MarIA project. Corpora 📃 Corpora Number of documents Number of tokens Size (GB) BNE 201,080,084

Plan de Tecnologías del Lenguaje - Gobierno de España 203 Dec 20, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Fine-tune GPT-3 with a Google Chat conversation history

Google Chat GPT-3 This repo will help you fine-tune GPT-3 with a Google Chat conversation history. The trained model will be able to converse as one o

Nate Baer 7 Dec 10, 2022