Repository for Project Insight: NLP as a Service

Overview

Project Insight

NLP as a Service

Project Insight

GitHub issues GitHub forks Github Stars GitHub license Code style: black

Contents

  1. Introduction
  2. Installation
  3. Project Details
  4. License

Introduction

Project Insight is designed to create NLP as a service with code base for both front end GUI (streamlit) and backend server (FastApi) the usage of transformers models on various downstream NLP task.

The downstream NLP tasks covered:

  • News Classification

  • Entity Recognition

  • Sentiment Analysis

  • Summarization

  • Information Extraction To Do

The user can select different models from the drop down to run the inference.

The users can also directly use the backend fastapi server to have a command line inference.

Features of the solution

  • Python Code Base: Built using Fastapi and Streamlit making the complete code base in Python.
  • Expandable: The backend is desinged in a way that it can be expanded with more Transformer based models and it will be available in the front end app automatically.
  • Micro-Services: The backend is designed with a microservices architecture, with dockerfile for each service and leveraging on Nginx as a reverse proxy to each independently running service.
    • This makes it easy to update, manitain, start, stop individual NLP services.

Installation

  • Clone the Repo.
  • Run the Docker Compose to spin up the Fastapi based backend service.
  • Run the Streamlit app with the streamlit run command.

Setup and Documentation

  1. Download the models

    • Download the models from here
    • Save them in the specific model folders inside the src_fastapi folder.
  2. Running the backend service.

    • Go to the src_fastapi folder
    • Run the Docker Compose comnand
    $ cd src_fastapi
    src_fastapi:~$ sudo docker-compose up -d
  3. Running the frontend app.

    • Go to the src_streamlit folder
    • Run the app with the streamlit run command
    $ cd src_streamlit
    src_streamlit:~$ streamlit run NLPfily.py
  4. Access to Fastapi Documentation: Since this is a microservice based design, every NLP task has its own seperate documentation

Project Details

Demonstration

Project Insight Demo

Directory Details

  • Front End: Front end code is in the src_streamlit folder. Along with the Dockerfile and requirements.txt

  • Back End: Back End code is in the src_fastapi folder.

    • This folder contains directory for each task: Classification, ner, summary...etc
    • Each NLP task has been implemented as a microservice, with its own fastapi server and requirements and Dockerfile so that they can be independently mantained and managed.
    • Each NLP task has its own folder and within each folder each trained model has 1 folder each. For example:
    - sentiment
        > app
            > api
                > distilbert
                    - model.bin
                    - network.py
                    - tokeniser files
                >roberta
                    - model.bin
                    - network.py
                    - tokeniser files
    
    • For each new model under each service a new folder will have to be added.

    • Each folder model will need the following files:

      • Model bin file.
      • Tokenizer files
      • network.py Defining the class of the model if customised model used.
    • config.json: This file contains the details of the models in the backend and the dataset they are trained on.

How to Add a new Model

  1. Fine Tune a transformer model for specific task. You can leverage the transformers-tutorials

  2. Save the model files, tokenizer files and also create a network.py script if using a customized training network.

  3. Create a directory within the NLP task with directory_name as the model name and save all the files in this directory.

  4. Update the config.json with the model details and dataset details.

  5. Update the <service>pro.py with the correct imports and conditions where the model is imported. For example for a new Bert model in Classification Task, do the following:

    • Create a new directory in classification/app/api/. Directory name bert.

    • Update config.json with following:

      "classification": {
      "model-1": {
          "name": "DistilBERT",
          "info": "This model is trained on News Aggregator Dataset from UC Irvin Machine Learning Repository. The news headlines are classified into 4 categories: **Business**, **Science and Technology**, **Entertainment**, **Health**. [New Dataset](https://archive.ics.uci.edu/ml/datasets/News+Aggregator)"
      },
      "model-2": {
          "name": "BERT",
          "info": "Model Info"
      }
      }
    • Update classificationpro.py with the following snippets:

      Only if customized class used

      from classification.bert import BertClass

      Section where the model is selected

      if model == "bert":
          self.model = BertClass()
          self.tokenizer = BertTokenizerFast.from_pretrained(self.path)

License

This project is licensed under the GPL-3.0 License - see the LICENSE.md file for details

Owner
Abhishek Kumar Mishra
Eat, Sleep, Pray, and Code * An Operations Innovation Lead at IHS Markit during working hours. * Love to read manga and cook new cuisines.
Abhishek Kumar Mishra
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
A library for Multilingual Unsupervised or Supervised word Embeddings

MUSE: Multilingual Unsupervised and Supervised Embeddings MUSE is a Python library for multilingual word embeddings, whose goal is to provide the comm

Facebook Research 3k Jan 06, 2023
Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning

GenSen Learning General Purpose Distributed Sentence Representations via Large Scale Multi-task Learning Sandeep Subramanian, Adam Trischler, Yoshua B

Maluuba Inc. 309 Oct 19, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Abhijith Neil Abraham 2 Nov 05, 2021
SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
lightweight, fast and robust columnar dataframe for data analytics with online update

streamdf Streamdf is a lightweight data frame library built on top of the dictionary of numpy array, developed for Kaggle's time-series code competiti

23 May 19, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
Code and data accompanying Natural Language Processing with PyTorch

Natural Language Processing with PyTorch Build Intelligent Language Applications Using Deep Learning By Delip Rao and Brian McMahan Welcome. This is a

Joostware 1.8k Jan 01, 2023
Python package to easily retrain OpenAI's GPT-2 text-generating model on new texts

gpt-2-simple A simple Python package that wraps existing model fine-tuning and generation scripts for OpenAI's GPT-2 text generation model (specifical

Max Woolf 3.1k Jan 07, 2023
Trex is a tool to match semantically similar functions based on transfer learning.

Trex is a tool to match semantically similar functions based on transfer learning.

62 Dec 28, 2022
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Pytorch implementation of Tacotron

Tacotron-pytorch A pytorch implementation of Tacotron: A Fully End-to-End Text-To-Speech Synthesis Model. Requirements Install python 3 Install pytorc

soobin seo 203 Dec 02, 2022
NLP-SentimentAnalysis - Coursera Course ( Duration : 5 weeks ) offered by DeepLearning.AI

Coursera Natural Language Processing Specialization This repository contains material related to Coursera Natural Language Processing Specialization.

Nishant Sharma 1 Jun 05, 2022
NeoDays-based tileset for the roguelike CDDA (Cataclysm Dark Days Ahead)

NeoDaysPlus Reduced contrast, expanded, and continuously developed version of the CDDA tileset NeoDays that's being completed with new sprites for mis

0 Nov 12, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
Chatbot with Pytorch, Python & Nextjs

Installation Instructions Make sure that you have Python 3, gcc, venv, and pip installed. Clone the repository $ git clone https://github.com/sahr

Rohit Sah 0 Dec 11, 2022
Some embedding layer implementation using ivy library

ivy-manual-embeddings Some embedding layer implementation using ivy library. Just for fun. It is based on NYCTaxiFare dataset from kaggle (cut down to

Ishtiaq Hussain 2 Feb 10, 2022
Random Directed Acyclic Graph Generator

DAG_Generator Random Directed Acyclic Graph Generator verison1.0 简介 工作流通常由DAG(有向无环图)来定义,其中每个计算任务$T_i$由一个顶点(node,task,vertex)表示。同时,任务之间的每个数据或控制依赖性由一条加权

Livion 17 Dec 27, 2022