Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

Overview

WideLinears

Pytorch parallel Neural Networks

A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-based systems such as evolutionary algorithms.

Installation

WideLinear is avaliable through Pypi

pip install widelinears

Pytorch Modules

WideLinear

Represents a family of parallel Linear layers that share the same input and output sizes

Parameters
  • beings (int): Number of parallel Linear layers
  • input_size (int): Size of input of each linear layer
  • output_size (int): Size of output of each linear layer
Input Tensor Shapes
  • (input_size,) will clone this input and give it to each Linear in the module, outputs (beings, output_size)
  • (beings, input_size) will give each Linear its own input vector, outputs (beings, output_size)
  • (batch, beings, input_size) will give each Linear its own batch of inputs, outputs (batch, beings, output_size)
Methods
  • forward (Tensor): Returns output for input tensors as explained above
  • clone_being (source, destination): Clones linear layer from one position to other, overriding what was there
  • get_single (position): Get LinearWidePointer class that is a pointer to this module but behaves as a normal single nn.Linear
  • to_linears (): Returns list of instances of nn.Linear with the same parameters as each Linear ins this module

WideDeep

WideDeep generalizes Deep Neural Networks using WideLinear layers, and simplifies constructing parallel Deep Neural Networks. Behaves as a group of separate Deep Neural Networks that run in parallel for good time efficiency.

Parameters
  • beings (int): Number of parallel Deep NNs
  • input_size (int): Size of input of each Deep NN
  • hidden_size (int): Size of each hidden layer in each Deep NN
  • depth (int): Number of hidden layers (if 1, there is a single Linear layer from input to output)
  • output_size (int): Size of output of each Deep NN
  • non_linear (optional function): Non Linearity function at each intermediate step (defaults to ReLU)
  • final_nl (optional function): Non Linearity at output (defaults to sigmoid)
Input Tensor Shapes
  • (input_size,) will clone this input and give it to each Deep NN, outputs (beings, output_size)
  • (beings, input_size) will give each Deep NN its own input vector, outputs (beings, output_size)
  • (batch, beings, input_size) will give each Deep NN its own batch of inputs, outputs (batch, beings, output_size)
Methods
  • forward (Tensor): Returns output for input tensors as explained above
  • clone_being (source, destination): Clones Deep NN from one position to other, overriding what was there

Model diagram Example architecture for parameters:

  • beings = 4
  • input_size = 5
  • hidden_size = 3
  • depth = 3
  • output_size = 4

License

MIT

Made by João Figueira

You might also like...
Convert scikit-learn models to PyTorch modules
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

A parallel framework for population-based multi-agent reinforcement learning.
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch
Learning to Communicate with Deep Multi-Agent Reinforcement Learning in PyTorch

Learning to Communicate with Deep Multi-Agent Reinforcement Learning This is a PyTorch implementation of the original Lua code release. Overview This

Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

Implementation of EMNLP 2017 Paper
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Implementation of EMNLP 2017 Paper
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

A
A "gym" style toolkit for building lightweight Neural Architecture Search systems

A "gym" style toolkit for building lightweight Neural Architecture Search systems

Releases(v_0.3)
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs We are trying hard to update the code, but it may take a while to complete due to our tight schedule rec

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
A Python toolbox to create adversarial examples that fool neural networks in PyTorch, TensorFlow, and JAX

Foolbox Native: Fast adversarial attacks to benchmark the robustness of machine learning models in PyTorch, TensorFlow, and JAX Foolbox is a Python li

Bethge Lab 2.4k Dec 25, 2022
ServiceX Transformer that converts flat ROOT ntuples into columnwise data

ServiceX_Uproot_Transformer ServiceX Transformer that converts flat ROOT ntuples into columnwise data Usage You can invoke the transformer from the co

Vis 0 Jan 20, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Kindle is an easy model build package for PyTorch.

Kindle is an easy model build package for PyTorch. Building a deep learning model became so simple that almost all model can be made by copy and paste from other existing model codes. So why code? wh

Jongkuk Lim 77 Nov 11, 2022
An Extendible (General) Continual Learning Framework based on Pytorch - official codebase of Dark Experience for General Continual Learning

Mammoth - An Extendible (General) Continual Learning Framework for Pytorch NEWS STAY TUNED: We are working on an update of this repository to include

AImageLab 277 Dec 28, 2022
Fully Convlutional Neural Networks for state-of-the-art time series classification

Deep Learning for Time Series Classification As the simplest type of time series data, univariate time series provides a reasonably good starting poin

Stephen 572 Dec 23, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nig

Yixuan Su 79 Nov 04, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
This repository contains PyTorch code for Robust Vision Transformers.

This repository contains PyTorch code for Robust Vision Transformers.

117 Dec 07, 2022
Technical experimentations to beat the stock market using deep learning :chart_with_upwards_trend:

DeepStock Technical experimentations to beat the stock market using deep learning. Experimentations Deep Learning Stock Prediction with Daily News Hea

Keon 449 Dec 29, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Learning To Have An Ear For Face Super-Resolution

Learning To Have An Ear For Face Super-Resolution [Project Page] This repository contains demo code of our CVPR2020 paper. Training and evaluation on

50 Nov 16, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022