Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Overview

Yolo-FastestV2DOI

image

  • Simple, fast, compact, easy to transplant
  • Less resource occupation, excellent single-core performance, lower power consumption
  • Faster and smaller:Trade 1% loss of accuracy for 40% increase in inference speed, reducing the amount of parameters by 25%
  • Fast training speed, low computing power requirements, training only requires 3GB video memory, gtx1660ti training COCO 1 epoch only takes 7 minutes

Evaluating indicator/Benchmark

Network COCO mAP(0.5) Resolution Run Time(4xCore) Run Time(1xCore) FLOPs(G) Params(M)
Yolo-FastestV2 23.56 % 352X352 3.23 ms 4.5 ms 0.238 0.25M
Yolo-FastestV1.1 24.40 % 320X320 5.59 ms 7.52 ms 0.252 0.35M
Yolov4-Tiny 40.2% 416X416 23.67ms 40.14ms 6.9 5.77M
  • Test platform Mi 11 Snapdragon 888 CPU,Based on NCNN
  • Reasons for the increase in inference speed: optimization of model memory access
  • Suitable for hardware with extremely tight computing resources

How to use

Dependent installation

  • PIP
pip3 install -r requirements.txt

Test

  • Picture test
    python3 test.py --data data/coco.data --weights modelzoo/coco2017-epoch-0.235624ap-model.pth --img img/dog.jpg
    

image

How to train

Building data sets(The dataset is constructed in the same way as darknet yolo)

  • The format of the data set is the same as that of Darknet Yolo, Each image corresponds to a .txt label file. The label format is also based on Darknet Yolo's data set label format: "category cx cy wh", where category is the category subscript, cx, cy are the coordinates of the center point of the normalized label box, and w, h are the normalized label box The width and height, .txt label file content example as follows:

    11 0.344192634561 0.611 0.416430594901 0.262
    14 0.509915014164 0.51 0.974504249292 0.972
    
  • The image and its corresponding label file have the same name and are stored in the same directory. The data file structure is as follows:

    .
    ├── train
    │   ├── 000001.jpg
    │   ├── 000001.txt
    │   ├── 000002.jpg
    │   ├── 000002.txt
    │   ├── 000003.jpg
    │   └── 000003.txt
    └── val
        ├── 000043.jpg
        ├── 000043.txt
        ├── 000057.jpg
        ├── 000057.txt
        ├── 000070.jpg
        └── 000070.txt
    
  • Generate a dataset path .txt file, the example content is as follows:

    train.txt

    /home/qiuqiu/Desktop/dataset/train/000001.jpg
    /home/qiuqiu/Desktop/dataset/train/000002.jpg
    /home/qiuqiu/Desktop/dataset/train/000003.jpg
    

    val.txt

    /home/qiuqiu/Desktop/dataset/val/000070.jpg
    /home/qiuqiu/Desktop/dataset/val/000043.jpg
    /home/qiuqiu/Desktop/dataset/val/000057.jpg
    
  • Generate the .names category label file, the sample content is as follows:

    category.names

    person
    bicycle
    car
    motorbike
    ...
    
    
  • The directory structure of the finally constructed training data set is as follows:

    .
    ├── category.names        # .names category label file
    ├── train                 # train dataset
    │   ├── 000001.jpg
    │   ├── 000001.txt
    │   ├── 000002.jpg
    │   ├── 000002.txt
    │   ├── 000003.jpg
    │   └── 000003.txt
    ├── train.txt              # train dataset path .txt file
    ├── val                    # val dataset
    │   ├── 000043.jpg
    │   ├── 000043.txt
    │   ├── 000057.jpg
    │   ├── 000057.txt
    │   ├── 000070.jpg
    │   └── 000070.txt
    └── val.txt                # val dataset path .txt file
    
    

Get anchor bias

  • Generate anchor based on current dataset
    python3 genanchors.py --traintxt ./train.txt
    
  • The anchors6.txt file will be generated in the current directory,the sample content of the anchors6.txt is as follows:
    12.64,19.39, 37.88,51.48, 55.71,138.31, 126.91,78.23, 131.57,214.55, 279.92,258.87  # anchor bias
    0.636158                                                                             # iou
    

Build the training .data configuration file

  • Reference./data/coco.data
    [name]
    model_name=coco           # model name
    
    [train-configure]
    epochs=300                # train epichs
    steps=150,250             # Declining learning rate steps
    batch_size=64             # batch size
    subdivisions=1            # Same as the subdivisions of the darknet cfg file
    learning_rate=0.001       # learning rate
    
    [model-configure]
    pre_weights=None          # The path to load the model, if it is none, then restart the training
    classes=80                # Number of detection categories
    width=352                 # The width of the model input image
    height=352                # The height of the model input image
    anchor_num=3              # anchor num
    anchors=12.64,19.39, 37.88,51.48, 55.71,138.31, 126.91,78.23, 131.57,214.55, 279.92,258.87 #anchor bias
    
    [data-configure]
    train=/media/qiuqiu/D/coco/train2017.txt   # train dataset path .txt file
    val=/media/qiuqiu/D/coco/val2017.txt       # val dataset path .txt file 
    names=./data/coco.names                    # .names category label file
    

Train

  • Perform training tasks
    python3 train.py --data data/coco.data
    

Evaluation

  • Calculate map evaluation
    python3 evaluation.py --data data/coco.data --weights modelzoo/coco2017-epoch-0.235624ap-model.pth
    

Deploy

NCNN

Comments
  • low precision and and recall

    low precision and and recall

    Hello

    Im training with only one class from coco dataset, data file is standar only changes anchors and classes to 1

    [name]
    model_name=coco
    
    [train-configure]
    epochs=300
    steps=150,250
    batch_size=128
    subdivisions=1
    learning_rate=0.001
    
    [model-configure]
    pre_weights=model/backbone/backbone.pth
    classes=1
    width=352
    height=352
    anchor_num=3
    anchors=8.54,20.34, 25.67,59.99, 52.42,138.38, 103.52,235.28, 197.43,103.53, 238.02,287.40
    
    [data-configure]
    train=coco_person/train.txt
    val=coco_person/val.txt
    names=data/coco.names
    

    I get an AP of 0.41 but with low precision 0.53 and recall of 0.41 that makes that model prediction has lots of false positives.

    Why im getting that low precision and recall?

    PD. i checked bbox annotations and are correct

    Thanks!

    opened by natxopedreira 1
  • 测试样例,没找到生成图片文件

    测试样例,没找到生成图片文件

    下载源码,运行如下命令: python3 test.py --data data/coco.data --weights modelzoo/coco2017-0.241078ap-model.pth --img img/000139.jpg

    却没找到test_result.png,指导一下是什么原因?多谢

    opened by lixiangMindSpore 1
  • Anchor Number

    Anchor Number

    I reduce the anchor number from 3 to 2, and there is a problem during training (evaluation):

    anchor_boxes[:, :, :, :2] = ((r[:, :, :, :2].sigmoid() * 2. - 0.5) + grid) * stride
    

    RuntimeError: The size of tensor a (2) must match the size of tensor b (3) at non-singleton dimension 3

    The model configure is:

    [model-configure] pre_weights=None classes=7 width=320 height=320 anchor_num=2 anchors=10.54,9.51, 45.60,40.45, 119.62,95.06, 253.71,138.37

    opened by Yuanye-F 1
  • onnx2ncnn  error   Gather not supported yet!

    onnx2ncnn error Gather not supported yet!

    (base) ~/Yolo-FastestV2$ python pytorch2onnx.py --data ./data/coco.data --weights modelzoo/coco2017-epoch-0.235624ap-model.pth load param... /home/pc/Yolo-FastestV2/model/backbone/shufflenetv2.py:59: TracerWarning: Converting a tensor to a Python boolean might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs! assert (num_channels % 4 == 0)

    ./onnx2ncnn model.onnx fast.param fast.bin Gather not supported yet!

    axis=0

    Gather not supported yet!

    axis=0

    Gather not supported yet!

    axis=0

    Gather not supported yet!

    opened by wavelet2008 1
  • 导出onnx后推理结果和pth不同

    导出onnx后推理结果和pth不同

    使用里面转换onnx的文件得到新的onnx模型后,同时用pth和onnx模型进行测试,发现得到的推理结果不同,使用onnxruntime onnx推理结果是(1,22,22,16)和(1,11,11,16) pth推理得到的是(1,12,22,22),(1,3,22,22),(1,1,22,22) (1,12,11,11),(1,3,11,11),(1,1,11,11) 即使做了处理后得到的最后结果也与pth文件得到的结果不同,不知道大佬能不能指点一下

    opened by ifdealer 0
  • train時發生錯誤,訊息如下

    train時發生錯誤,訊息如下

    Traceback (most recent call last): File "train.py", line 139, in _, _, AP, _ = utils.utils.evaluation(val_dataloader, cfg, model, device) File "D:\competition\Yolo-FastestV2-main\utils\utils.py", line 367, in evaluation for imgs, targets in pbar: File "C:\anaconda\envs\fire\lib\site-packages\tqdm\std.py", line 1195, in iter for obj in iterable: File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data\dataloader.py", line 521, in next data = self._next_data() File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data\dataloader.py", line 1203, in _next_data return self._process_data(data) File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data\dataloader.py", line 1229, in _process_data data.reraise() File "C:\anaconda\envs\fire\lib\site-packages\torch_utils.py", line 434, in reraise raise exception Exception: Caught Exception in DataLoader worker process 0. Original Traceback (most recent call last): File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data_utils\worker.py", line 287, in _worker_loop data = fetcher.fetch(index) File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data_utils\fetch.py", line 49, in fetch data = [self.dataset[idx] for idx in possibly_batched_index] File "C:\anaconda\envs\fire\lib\site-packages\torch\utils\data_utils\fetch.py", line 49, in data = [self.dataset[idx] for idx in possibly_batched_index] File "D:\competition\Yolo-FastestV2-main\utils\datasets.py", line 127, in getitem raise Exception("%s is not exist" % label_path) Exception: .txt is not exist

    opened by richardlotw 4
Releases(V0.2)
Owner
qiuqiuqiuqiu ...球
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Human Action Controller - A human action controller running on different platforms.

Human Action Controller (HAC) Goal A human action controller running on different platforms. Fun Easy-to-use Accurate Anywhere Fun Examples Mouse Cont

27 Jul 20, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
QuALITY: Question Answering with Long Input Texts, Yes!

QuALITY: Question Answering with Long Input Texts, Yes! Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, An

ML² AT CILVR 61 Jan 02, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

57 Nov 28, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression

Mercer Gaussian Process (MGP) and Fourier Gaussian Process (FGP) Regression We provide the code used in our paper "How Good are Low-Rank Approximation

Aristeidis (Ares) Panos 0 Dec 13, 2021
Code accompanying our paper Feature Learning in Infinite-Width Neural Networks

Empirical Experiments in "Feature Learning in Infinite-width Neural Networks" This repo contains code to replicate our experiments (Word2Vec, MAML) in

Edward Hu 37 Dec 14, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 67 Dec 28, 2022
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022