LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

Overview

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrieval text relevant base on result of elasticsearch

  • Model achieved 0.747 F2 score in public test (Legal Text Retrieval Zalo AI Challenge 2021)
  • If using elasticsearch only, our F2 score is 0.54

Algorithm design

Our algorithm includes two key components:

  • Elasticsearch
  • Cross Encoder Model

Elasticsearch

Elasticsearch is used for filtering top-k most relevant articles based on BM25 score.

Cross Encoder Model

model

Our model accepts query, article text (passage) and article title as inputs and outputs a relevant score of that query and that article. Higher score, more relavant. We use pretrained vinai/phobert-base and CrossEntropyLoss or BCELoss as loss function

Train dataset

Non-relevant samples in dataset are obtained by top-10 result of elasticsearch, the training data (train_data_model.json) has format as follow:

[
    {
        "question_id": "..."
        "question": "..."
        "relevant_articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
        "non_relevant_articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
    },
    ...
]

Test dataset

First we use elasticsearch to obtain k relevant candidates (k=top-50 result of elasticsearch), then LTR_CrossEncoder classify which actual relevant article. The test data (test_data_model.json) has format as follow:

[
    {
        "question_id": "..."
        "question": "..."
        "articles":[
            {
                "law_id": "..."
                "article_id": "..."
                "title": "..."
                "text": "..."
            },
            ...
        ]
    },
    ...
]

Training

Run the following bash file to train model:

bash run_phobert.sh

Inference

We also provide model checkpoints. Please download these checkpoints if you want to make inference on a new text file without training the models from scratch. Create new checkpoint folder, unzip model file and push it in checkpoint folder. https://drive.google.com/file/d/1oT8nlDIAatx3XONN1n5eOgYTT6Lx_h_C/view?usp=sharing

Run the following bash file to infer test dataset:

bash run_predict.sh
Owner
Xuan Hieu Duong
Xuan Hieu Duong
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Real life contra a deep learning project built using mediapipe and openc

real-life-contra Description A python script that translates the body movement into in game control. Welcome to all new real life contra a deep learni

Programminghut 7 Jan 26, 2022
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021)

T2Net Task Transformer Network for Joint MRI Reconstruction and Super-Resolution (MICCAI 2021) [Paper][Code] Dependencies numpy==1.18.5 scikit_image==

64 Nov 23, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
Simple codebase for flexible neural net training

neural-modular Simple codebase for flexible neural net training. Allows for seamless exchange of models, dataset, and optimizers. Uses hydra for confi

Jannik Kossen 7 Apr 05, 2022
Reinforcement Learning with Q-Learning Algorithm on gym's frozen lake environment implemented in python

Reinforcement Learning with Q Learning Algorithm Q learning algorithm is trained on the gym's frozen lake environment. Libraries Used gym Numpy tqdm P

1 Nov 10, 2021
Demo code for paper "Learning optical flow from still images", CVPR 2021.

Depthstillation Demo code for "Learning optical flow from still images", CVPR 2021. [Project page] - [Paper] - [Supplementary] This code is provided t

130 Dec 25, 2022
A Kernel fuzzer focusing on race bugs

Razzer: Finding kernel race bugs through fuzzing Environment setup $ source scripts/envsetup.sh scripts/envsetup.sh sets up necessary environment var

Systems and Software Security Lab at Seoul National University (SNU) 328 Dec 26, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
TransCD: Scene Change Detection via Transformer-based Architecture

TransCD: Scene Change Detection via Transformer-based Architecture

wangzhixue 29 Dec 11, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer and Novel View Synthesis

Impersonator PyTorch implementation of our ICCV 2019 paper: Liquid Warping GAN: A Unified Framework for Human Motion Imitation, Appearance Transfer an

SVIP Lab 1.7k Jan 06, 2023