Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Overview

Geometric Vector Perceptron

Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL Townshend, and RO Dror.

UPDATE: Also includes equivariant GNNs with vector gating as described in Equivariant Graph Neural Networks for 3D Macromolecular Structure by B Jing, S Eismann, P Soni, and RO Dror.

Scripts for training / testing / sampling on protein design and training / testing on all ATOM3D tasks are provided.

Note: This implementation is in PyTorch Geometric. The original TensorFlow code, which is not maintained, can be found here.

Requirements

  • UNIX environment
  • python==3.6.13
  • torch==1.8.1
  • torch_geometric==1.7.0
  • torch_scatter==2.0.6
  • torch_cluster==1.5.9
  • tqdm==4.38.0
  • numpy==1.19.4
  • sklearn==0.24.1
  • atom3d==0.2.1

While we have not tested with other versions, any reasonably recent versions of these requirements should work.

General usage

We provide classes in three modules:

  • gvp: core GVP modules and GVP-GNN layers
  • gvp.data: data pipelines for both general use and protein design
  • gvp.models: implementations of MQA and CPD models
  • gvp.atom3d: models and data pipelines for ATOM3D

The core modules in gvp are meant to be as general as possible, but you will likely have to modify gvp.data and gvp.models for your specific application, with the existing classes serving as examples.

Installation: Download this repository and run python setup.py develop or pip install . -e. Be sure to manually install torch_geometric first!

Tuple representation: All inputs and outputs with both scalar and vector channels are represented as a tuple of two tensors (s, V). Similarly, all dimensions should be specified as tuples (n_scalar, n_vector) where n_scalar and n_vector are the number of scalar and vector features, respectively. All V tensors must be shaped as [..., n_vector, 3], not [..., 3, n_vector].

Batching: We adopt the torch_geometric convention of absorbing the batch dimension into the node dimension and keeping track of batch index in a separate tensor.

Amino acids: Models view sequences as int tensors and are agnostic to aa-to-int mappings. Such mappings are specified as the letter_to_num attribute of gvp.data.ProteinGraphDataset. Currently, only the 20 standard amino acids are supported.

For all classes, see the docstrings for more detailed usage. If you have any questions, please contact [email protected].

Core GVP classes

The class gvp.GVP implements a Geometric Vector Perceptron.

import gvp

in_dims = scalars_in, vectors_in
out_dims = scalars_out, vectors_out
gvp_ = gvp.GVP(in_dims, out_dims)

To use vector gating, pass in vector_gate=True and the appropriate activations.

gvp_ = gvp.GVP(in_dims, out_dims,
            activations=(F.relu, None), vector_gate=True)

The classes gvp.Dropout and gvp.LayerNorm implement vector-channel dropout and layer norm, while using normal dropout and layer norm for scalar channels. Both expect inputs and return outputs of form (s, V), but will also behave like their scalar-valued counterparts if passed a single tensor.

dropout = gvp.Dropout(drop_rate=0.1)
layernorm = gvp.LayerNorm(out_dims)

The function gvp.randn returns tuples (s, V) drawn from a standard normal. Such tuples can be directly used in a forward pass.

x = gvp.randn(n=5, dims=in_dims)
# x = (s, V) with s.shape = [5, scalars_in] and V.shape = [5, vectors_in, 3]

out = gvp_(x)
out = drouput(out)
out = layernorm(out)

Finally, we provide utility functions for adding, concatenating, and indexing into such tuples.

y = gvp.randn(n=5, dims=in_dims)
z = gvp.tuple_sum(x, y)
z = gvp.tuple_cat(x, y, dim=-1) # concat along channel axis
z = gvp.tuple_cat(x, y, dim=-2) # concat along node / batch axis

node_mask = torch.rand(5) < 0.5
z = gvp.tuple_index(x, node_mask) # select half the nodes / batch at random

GVP-GNN layers

The class GVPConv is a torch_geometric.MessagePassing module which forms messages and aggregates them at the destination node, returning new node embeddings. The original embeddings are not updated.

nodes = gvp.randn(n=5, in_dims)
edges = gvp.randn(n=10, edge_dims) # 10 random edges
edge_index = torch.randint(0, 5, (2, 10), device=device)

conv = gvp.GVPConv(in_dims, out_dims, edge_dims)
out = conv(nodes, edge_index, edges)

The class GVPConvLayer is a nn.Module that forms messages using a GVPConv and updates the node embeddings as described in the paper. Because the updates are residual, the dimensionality of the embeddings are not changed.

layer = gvp.GVPConvLayer(node_dims, edge_dims)
nodes = layer(nodes, edge_index, edges)

The class also allows updates where incoming messages where src >= dst are computed using a different set of source embeddings, as in autoregressive models.

nodes_static = gvp.randn(n=5, in_dims)
layer = gvp.GVPConvLayer(node_dims, edge_dims, autoregressive=True)
nodes = layer(nodes, edge_index, edges, autoregressive_x=nodes_static)

Both GVPConv and GVPConvLayer accept arguments activations and vector_gate to use vector gating.

Loading data

The class gvp.data.ProteinGraphDataset transforms protein backbone structures into featurized graphs. Following Ingraham, et al, NeurIPS 2019, we use a JSON/dictionary format to specify backbone structures:

[
    {
        "name": "NAME"
        "seq": "TQDCSFQHSP...",
        "coords": [[[74.46, 58.25, -21.65],...],...]
    }
    ...
]

For each structure, coords should be a num_residues x 4 x 3 nested list of the positions of the backbone N, C-alpha, C, and O atoms of each residue (in that order).

import gvp.data

# structures is a list or list-like as shown above
dataset = gvp.data.ProteinGraphDataset(structures)
# dataset[i] is featurized graph corresponding to structures[i]

The returned graphs are of type torch_geometric.data.Data with attributes

  • x: alpha carbon coordinates
  • seq: sequence converted to int tensor according to attribute self.letter_to_num
  • name, edge_index
  • node_s, node_v: node features as described in the paper with dims (6, 3)
  • edge_s, edge_v: edge features as described in the paper with dims (32, 1)
  • mask: false for nodes with any nan coordinates

The gvp.data.ProteinGraphDataset can be used with a torch.utils.data.DataLoader. We supply a class gvp.data.BatchSampler which will form batches based on the number of total nodes in a batch. Use of this sampler is optional.

node_counts = [len(s['seq']) for s in structures]
sampler = gvp.data.BatchSampler(node_counts, max_nodes=3000)
dataloader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler)

The dataloader will return batched graphs of type torch_geometric.data.Batch with an additional batch attibute. The attributes of the Batch will then need to be formed into (s, V) tuples before passing into a GVP-GNN layer or network.

for batch in dataloader:
    batch = batch.to(device) # optional
    nodes = (batch.node_s, batch.node_v)
    edges = (batch.edge_s, batch.edge_v)
    
    out = layer(nodes, batch.edge_index, edges)

Ready-to-use protein GNNs

We provide two fully specified networks which take in protein graphs and output a scalar prediction for each graph (gvp.models.MQAModel) or a 20-dimensional feature vector for each node (gvp.models.CPDModel), corresponding to the two tasks in our paper. Note that if you are using the unmodified gvp.data.ProteinGraphDataset, node_in_dims and edge_in_dims must be (6, 3) and (32, 1), respectively.

import gvp.models

# batch, nodes, edges as formed above

mqa_model = gvp.models.MQAModel(node_in_dim, node_h_dim, 
                        edge_in_dim, edge_h_dim, seq_in=True)
out = mqa_model(nodes, batch.edge_index, edges,
                 seq=batch.seq, batch=batch.batch) # shape (n_graphs,)

cpd_model = gvp.models.CPDModel(node_in_dim, node_h_dim, 
                        edge_in_dim, edge_h_dim)
out = cpd_model(nodes, batch.edge_index, 
                 edges, batch.seq) # shape (n_nodes, 20)

Protein design

We provide a script run_cpd.py to train, validate, and test a CPDModel as specified in the paper using the CATH 4.2 dataset and TS50 dataset. If you want to use a trained model on new structures, see the section "Sampling" below.

Fetching data

Run getCATH.sh in data/ to fetch the CATH 4.2 dataset. If you are interested in testing on the TS 50 test set, also run grep -Fv -f ts50remove.txt chain_set.jsonl > chain_set_ts50.jsonl to produce a training set without overlap with the TS 50 test set.

Training / testing

To train a model, simply run python run_cpd.py --train. To test a trained model on both the CATH 4.2 test set and the TS50 test set, run python run_cpd --test-r PATH for perplexity or with --test-p for perplexity. Run python run_cpd.py -h for more detailed options.

$ python run_cpd.py -h

usage: run_cpd.py [-h] [--models-dir PATH] [--num-workers N] [--max-nodes N] [--epochs N] [--cath-data PATH] [--cath-splits PATH] [--ts50 PATH] [--train] [--test-r PATH] [--test-p PATH] [--n-samples N]

optional arguments:
  -h, --help          show this help message and exit
  --models-dir PATH   directory to save trained models, default=./models/
  --num-workers N     number of threads for loading data, default=4
  --max-nodes N       max number of nodes per batch, default=3000
  --epochs N          training epochs, default=100
  --cath-data PATH    location of CATH dataset, default=./data/chain_set.jsonl
  --cath-splits PATH  location of CATH split file, default=./data/chain_set_splits.json
  --ts50 PATH         location of TS50 dataset, default=./data/ts50.json
  --train             train a model
  --test-r PATH       evaluate a trained model on recovery (without training)
  --test-p PATH       evaluate a trained model on perplexity (without training)
  --n-samples N       number of sequences to sample (if testing recovery), default=100

Confusion matrices: Note that the values are normalized such that each row (corresponding to true class) sums to 1000, with the actual number of residues in that class printed under the "Count" column.

Sampling

To sample from a CPDModel, prepare a ProteinGraphDataset, but do NOT pass into a DataLoader. The sequences are not used, so placeholders can be used for the seq attributes of the original structures dicts.

protein = dataset[i]
nodes = (protein.node_s, protein.node_v)
edges = (protein.edge_s, protein.edge_v)
    
sample = model.sample(nodes, protein.edge_index,  # shape = (n_samples, n_nodes)
                      edges, n_samples=n_samples)

The output will be an int tensor, with mappings corresponding to those used when training the model.

ATOM3D

We provide models and dataloaders for all ATOM3D tasks in gvp.atom3d, as well as a training and testing script in run_atom3d.py. This also supports loading pretrained weights for transfer learning experiments.

Models / data loaders

The GVP-GNNs for ATOM3D are supplied in gvp.atom3d and are named after each task: gvp.atom3d.MSPModel, gvp.atom3d.PPIModel, etc. All of these extend the base class gvp.atom3d.BaseModel. These classes take no arguments at initialization, take in a torch_geometric.data.Batch representation of a batch of structures, and return an output corresponding to the task. Details vary based on the exact task---see the docstrings.

psr_model = gvp.atom3d.PSRModel()

gvp.atom3d also includes data loaders to produce torch_geometric.data.Batch objects from an underlying atom3d.datasets.LMDBDataset. In the case of all tasks except PPI and RES, these are in the form of callable transform objects---gvp.atom3d.SMPTransform, gvp.atom3d.RSRTransform, etc---which should be passed into the constructor of a atom3d.datasets.LMDBDataset:

psr_dataset = atom3d.datasets.LMDBDataset(path_to_dataset,
                    transform=gvp.atom3d.PSRTransform())

On the other hand, gvp.atom3d.PPIDataset and gvp.atom3d.RESDataset take the place of / are wrappers around the atom3d.datasets.LMDBDataset:

ppi_dataset = gvp.atom3d.PPIDataset(path_to_dataset)
res_dataset = gvp.atom3d.RESDataset(path_to_dataset, path_to_split) # see docstring

All datasets must be then wrapped in a torch_geometric.data.DataLoader:

psr_dataloader = torch_geometric.data.DataLoader(psr_dataset, batch_size=batch_size)

The dataloaders can be directly iterated over to yield torch_geometric.data.Batch objects, which can then be passed into the models.

for batch in psr_dataloader:
    pred = psr_model(batch) # pred.shape = (batch_size,)

Training / testing

To run training / testing on ATOM3D, download the datasets as described here. Modify the function get_datasets in run_atom3d.py with the paths to the datasets. Then run:

$ python run_atom3d.py -h

usage: run_atom3d.py [-h] [--num-workers N] [--smp-idx IDX]
                     [--lba-split SPLIT] [--batch SIZE] [--train-time MINUTES]
                     [--val-time MINUTES] [--epochs N] [--test PATH]
                     [--lr RATE] [--load PATH]
                     TASK

positional arguments:
  TASK                  {PSR, RSR, PPI, RES, MSP, SMP, LBA, LEP}

optional arguments:
  -h, --help            show this help message and exit
  --num-workers N       number of threads for loading data, default=4
  --smp-idx IDX         label index for SMP, in range 0-19
  --lba-split SPLIT     identity cutoff for LBA, 30 (default) or 60
  --batch SIZE          batch size, default=8
  --train-time MINUTES  maximum time between evaluations on valset,
                        default=120 minutes
  --val-time MINUTES    maximum time per evaluation on valset, default=20
                        minutes
  --epochs N            training epochs, default=50
  --test PATH           evaluate a trained model
  --lr RATE             learning rate
  --load PATH           initialize first 2 GNN layers with pretrained weights

For example:

# train a model
python run_atom3d.py PSR

# train a model with pretrained weights
python run_atom3d.py PSR --load PATH

# evaluate a model
python run_atom3d.py PSR --test PATH

Acknowledgements

Portions of the input data pipeline were adapted from Ingraham, et al, NeurIPS 2019. We thank Pratham Soni for portions of the implementation in PyTorch.

Citation

@inproceedings{
    jing2021learning,
    title={Learning from Protein Structure with Geometric Vector Perceptrons},
    author={Bowen Jing and Stephan Eismann and Patricia Suriana and Raphael John Lamarre Townshend and Ron Dror},
    booktitle={International Conference on Learning Representations},
    year={2021},
    url={https://openreview.net/forum?id=1YLJDvSx6J4}
}

@article{jing2021equivariant,
  title={Equivariant Graph Neural Networks for 3D Macromolecular Structure},
  author={Jing, Bowen and Eismann, Stephan and Soni, Pratham N and Dror, Ron O},
  journal={arXiv preprint arXiv:2106.03843},
  year={2021}
}
Owner
Dror Lab
Ron Dror's computational biology laboratory at Stanford University
Dror Lab
High dimensional black-box optimizer using Latent Action Monte Carlo Tree Search algorithm

LA-MCTS The code is based of paper Learning Search Space Partition for Black-box Optimization using Monte Carlo Tree Search. Component LA-MCTS has thr

Meta Research 18 Oct 24, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
Perform zero-order Hankel Transform for an 1D array (float or real valued).

perform zero-order Hankel Transform for an 1D array (float or real valued). An discrete form of Parseval theorem is guaranteed. Suit for iterative problems.

1 Jan 17, 2022
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

Lei Huang 21 Dec 27, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Automatically download the cwru data set, and then divide it into training data set and test data set

Automatically download the cwru data set, and then divide it into training data set and test data set.自动下载cwru数据集,然后分训练数据集和测试数据集

6 Jun 27, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022