a chinese segment base on crf

Related tags

Text Data & NLPgenius
Overview

Genius

Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。

Feature

  • 支持python2.x、python3.x以及pypy2.x。
  • 支持简单的pinyin分词
  • 支持用户自定义break
  • 支持用户自定义合并词典
  • 支持词性标注

Source Install

  • 安装git: 1) ubuntu or debian apt-get install git 2) fedora or redhat yum install git
  • 下载代码:git clone https://github.com/duanhongyi/genius.git
  • 安装代码:python setup.py install

Pypi Install

  • 执行命令:easy_install genius或者pip install genius

Algorithm

  • 采用trie树进行合并词典查找
  • 基于wapiti实现条件随机场分词
  • 可以通过genius.loader.ResourceLoader来重载默认的字典

功能 1):分词genius.seg_text方法

  • genius.seg_text函数接受5个参数,其中text是必填参数:
  • text第一个参数为需要分词的字符
  • use_break代表对分词结构进行打断处理,默认值True
  • use_combine代表是否使用字典进行词合并,默认值False
  • use_tagging代表是否进行词性标注,默认值True
  • use_pinyin_segment代表是否对拼音进行分词处理,默认值True

代码示例( 全功能分词 )

#encoding=utf-8
import genius
text = u"""昨天,我和施瓦布先生一起与部分企业家进行了交流,大家对中国经济当前、未来发展的态势、走势都十分关心。"""
seg_list = genius.seg_text(
    text,
    use_combine=True,
    use_pinyin_segment=True,
    use_tagging=True,
    use_break=True
)
print('\n'.join(['%s\t%s' % (word.text, word.tagging) for word in seg_list]))

功能 2):面向索引分词

  • genius.seg_keywords方法专门为搜索引擎索引准备,保留歧义分割,其中text是必填参数。
  • text第一个参数为需要分词的字符
  • use_break代表对分词结构进行打断处理,默认值True
  • use_tagging代表是否进行词性标注,默认值False
  • use_pinyin_segment代表是否对拼音进行分词处理,默认值False
  • 由于合并操作与此方法有意义上的冲突,此方法并不提供合并功能;并且如果采用此方法做索引时候,检索时不推荐genius.seg_text使用use_combine=True参数。

代码示例

#encoding=utf-8
import genius

seg_list = genius.seg_keywords(u'南京市长江大桥')
print('\n'.join([word.text for word in seg_list]))

功能 3):关键词提取

  • genius.extract_tag方法专门为提取tag关键字准备,其中text是必填参数。
  • text第一个参数为需要分词的字符
  • use_break代表对分词结构进行打断处理,默认值True
  • use_combine代表是否使用字典进行词合并,默认值False
  • use_pinyin_segment代表是否对拼音进行分词处理,默认值False

代码示例

#encoding=utf-8
import genius

tag_list = genius.extract_tag(u'南京市长江大桥')
print('\n'.join(tag_list))

其他说明 4):

  • 目前分词语料出自人民日报1998年1月份,所以对于新闻类文章分词较为准确。
  • CRF分词效果很大程度上依赖于训练语料的类别以及覆盖度,若解决语料问题分词和标注效果还有很大的提升空间。
Owner
duanhongyi
a simple programmer.
duanhongyi
Machine Psychology: Python Generated Art

Machine Psychology: Python Generated Art A limited collection of 64 algorithmically generated artwork. Each unique piece is then given a title by the

Pixegami Team 67 Dec 13, 2022
A multi-voice TTS system trained with an emphasis on quality

TorToiSe Tortoise is a text-to-speech program built with the following priorities: Strong multi-voice capabilities. Highly realistic prosody and inton

James Betker 2.1k Jan 01, 2023
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
ACL'2021: Learning Dense Representations of Phrases at Scale

DensePhrases DensePhrases is an extractive phrase search tool based on your natural language inputs. From 5 million Wikipedia articles, it can search

Princeton Natural Language Processing 540 Dec 30, 2022
Machine Learning Course Project, IMDB movie review sentiment analysis by lstm, cnn, and transformer

IMDB Sentiment Analysis This is the final project of Machine Learning Courses in Huazhong University of Science and Technology, School of Artificial I

Daniel 0 Dec 27, 2021
Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition, Part-of-Speech Tagging and so on.

anaGo anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as nam

Hiroki Nakayama 1.5k Dec 05, 2022
Trained T5 and T5-large model for creating keywords from text

text to keywords Trained T5-base and T5-large model for creating keywords from text. Supported languages: ru Pretraining Large version | Pretraining B

Danil 61 Nov 24, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Source code of the "Graph-Bert: Only Attention is Needed for Learning Graph Representations" paper

Graph-Bert Source code of "Graph-Bert: Only Attention is Needed for Learning Graph Representations". Please check the script.py as the entry point. We

14 Mar 25, 2022
Ecco is a python library for exploring and explaining Natural Language Processing models using interactive visualizations.

Visualize, analyze, and explore NLP language models. Ecco creates interactive visualizations directly in Jupyter notebooks explaining the behavior of Transformer-based language models (like GPT2, BER

Jay Alammar 1.6k Dec 25, 2022
Bu Chatbot, Konya Bilim Merkezi Yen için tasarlanmış olan bir projedir.

chatbot Bu Chatbot, Konya Bilim Merkezi Yeni Ufuklar Sergisi için 2021 Yılında tasarlanmış olan bir projedir. Chatbot Python ortamında yazılmıştır. Sö

Emre Özkul 1 Feb 23, 2022
Implementation of Fast Transformer in Pytorch

Fast Transformer - Pytorch Implementation of Fast Transformer in Pytorch. This only work as an encoder. Yannic video AI Epiphany Install $ pip install

Phil Wang 167 Dec 27, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Train BPE with fastBPE, and load to Huggingface Tokenizer.

BPEer Train BPE with fastBPE, and load to Huggingface Tokenizer. Description The BPETrainer of Huggingface consumes a lot of memory when I am training

Lizhuo 1 Dec 23, 2021
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Code for CVPR 2021 paper: Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning

Revamping Cross-Modal Recipe Retrieval with Hierarchical Transformers and Self-supervised Learning This is the PyTorch companion code for the paper: A

Amazon 69 Jan 03, 2023
뉴스 도메인 질의응답 시스템 (21-1학기 졸업 프로젝트)

뉴스 도메인 질의응답 시스템 본 프로젝트는 뉴스기사에 대한 질의응답 서비스 를 제공하기 위해서 진행한 프로젝트입니다. 약 3개월간 ( 21. 03 ~ 21. 05 ) 진행하였으며 Transformer 아키텍쳐 기반의 Encoder를 사용하여 한국어 질의응답 데이터셋으로

TaegyeongEo 4 Jul 08, 2022
Chinese Grammatical Error Diagnosis

nlp-CGED Chinese Grammatical Error Diagnosis 中文语法纠错研究 基于序列标注的方法 所需环境 Python==3.6 tensorflow==1.14.0 keras==2.3.1 bert4keras==0.10.6 笔者使用了开源的bert4keras

12 Nov 25, 2022
Twitter-Sentiment-Analysis - Twitter sentiment analysis for india's top online retailers(2019 to 2022)

Twitter-Sentiment-Analysis Twitter sentiment analysis for india's top online retailers(2019 to 2022) Project Overview : Sentiment Analysis helps us to

Balaji R 1 Jan 01, 2022