Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

Overview

BLEU Score

Implementation for paper:

BLEU: a Method for Automatic Evaluation of Machine Translation

Author: Ba Ngoc from ProtonX

BLEU score is a popular metric to evaluate machine translation. Check out the recent Transformer project we published.

I. Usage

from bleu_score import cal_corpus_bleu_score

candidates = ['eating chicken chicken is a eating a eating chicken',
              'eating chicken chicken is not good']
references_list = [['a chicken is eating chicken', 'there is a chicken eating chicken'], [
    'a chicken is eating chicken', 'there is a chicken eating chicken']]

bleu_score = cal_corpus_bleu_score(candidates, references_list,
                      weights=(0.25, 0.25, 0.25, 0.25), N=4)

print('Bleu Score: {}'.format(bleu_score))

II. BLEU Score Formula

1. Precision

We count specific n-grams in the candidates and the number of those grams in the references. Then we calculate the proportion of two countings and get the precision.

Important to note: Count clip means that the number of typical n-grams can not exceed the maximum number of that n-grams in any single reference.

For example: if ('a', 'a') gram exists 3 times in a candidate. However, the maximum number of this gram in any single reference is 2. So we will use value 2 for calculation.

If you never heard about grams? It means that we count the number of continuous substrings with a pre-set length in a string.

Candidate 1: 'eating chicken chicken is a eating a eating chicken'

-------Unigram------

eating 3
chicken 3
is 1
a 2

-------bigrams------

eating chicken 2
chicken chicken 1
chicken is 1
is a 1
a eating 2
eating a 1

We can do the same thing with trigrams and 4-grams

2. Sentence brevity penalty

We prefer the reference with a length that is closest to the candidate's.

Checkout function get_eff_ref_length in utils.py.

c: the total lengths of all candidates

r: the total lengths of all effective reference lengths

3. BLEU Formula

N: the number of grams

w: list of pre-set weight for each gram

Owner
Ngoc Nguyen Ba
ProtonX Founder, VietAI Hanoi Founder.
Ngoc Nguyen Ba
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 07, 2023
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Dec 28, 2022
Easy to start. Use deep nerual network to predict the sentiment of movie review.

Easy to start. Use deep nerual network to predict the sentiment of movie review. Various methods, word2vec, tf-idf and df to generate text vectors. Various models including lstm and cov1d. Achieve f1

1 Nov 19, 2021
pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks

A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

297 Dec 29, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
Data and code to support "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley)

anlp21 Course materials for "Applied Natural Language Processing" (INFO 256, Fall 2021, UC Berkeley) Syllabus: http://people.ischool.berkeley.edu/~dba

David Bamman 48 Dec 06, 2022
TLA - Twitter Linguistic Analysis

TLA - Twitter Linguistic Analysis Tool for linguistic analysis of communities TLA is built using PyTorch, Transformers and several other State-of-the-

Tushar Sarkar 47 Aug 14, 2022
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG)

Indobenchmark Toolkit Indobenchmark are collections of Natural Language Understanding (IndoNLU) and Natural Language Generation (IndoNLG) resources fo

Samuel Cahyawijaya 11 Aug 26, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
An official repository for tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a University of Edinburgh master's course.

PMR computer tutorials on HMMs (2021-2022) This is a repository for computer tutorials of Probabilistic Modelling and Reasoning (2021/2022) - a Univer

Vaidotas Šimkus 10 Dec 06, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec

Wake Wake: Context-Sensitive Automatic Keyword Extraction Using Word2vec Abstract استخراج خودکار کلمات کلیدی متون کوتاه فارسی با استفاده از word2vec ب

Omid Hajipoor 1 Dec 17, 2021
Multispeaker & Emotional TTS based on Tacotron 2 and Waveglow

This Repository contains a sample code for Tacotron 2, WaveGlow with multi-speaker, emotion embeddings together with a script for data preprocessing.

Ivan Didur 106 Jan 01, 2023
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
Pipeline for training LSA models using Scikit-Learn.

Latent Semantic Analysis Pipeline for training LSA models using Scikit-Learn. Usage Instead of writing custom code for latent semantic analysis, you j

Dani El-Ayyass 23 Sep 05, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022