DUE: End-to-End Document Understanding Benchmark

Overview

This is the repository that provide tools to download data, reproduce the baseline results and evaluation.

What can you achieve with this guide

Based on this repository, you may be able to:

  1. download data for benchmark in a unified format.
  2. run all the baselines.
  3. evaluate already trained baseline models.

Install benchmark-related repositories

Start the container:

sudo userdocker run nvcr.io/nvidia/pytorch:20.12-py3

Clone the repo with:

git clone [email protected]:due-benchmark/baselines.git

Install the requirements:

pip install -e .

1. Download datasets and the base model

The datasets are re-hosted on the https://duebenchmark.com/data and can be downloaded from there. Moreover, since the baselines are finetuned based on the T5 model, you need to download the original model. Again it is re-hosted at https://duebenchmark.com/data. Please place it into the due_benchmark_data directory after downloading.

TODO: dopisać resztę

2. Run baseline trainings

2.1 Process datasets into memmaps (binarization)

In order to process datasets into memmaps, set the directory downloaded_data_path to downloaded data, set memmap_directory to a new directory that will store binarized datas, and use the following script:

./create_memmaps.sh

2.2 Run training script

Single training can be started with the following command, assuming out_dir is set as an output for the trained model's checkpoints and generated outputs. Additionally, set datas to any of the previously generated datasets (e.g., to DeepForm).

python benchmarker/cli/l5/train.py \
    --model_name_or_path ${downloaded_data_path}/t5-base \
    --relative_bias_args="[{\"type\":\"1d\"}]" \
    --dropout_rate 0.15 \
    --model_type=t5 \
    --output_dir ${out_dir} \
    --data_dir ${memmap_directory}/${datas}_memmap/train \
    --val_data_dir ${memmap_directory}/${datas}_memmap/dev \
    --test_data_dir ${memmap_directory}/${datas}_memmap/test \
    --gpus 1 \
    --max_epochs 30 \
    --train_batch_size 1 \
    --eval_batch_size 2 \
    --overwrite_output_dir \
    --accumulate_grad_batches 64 \
    --max_source_length 1024 \
    --max_target_length 256 \
    --eval_max_gen_length 16 \
    --learning_rate 2e-4 \
    --lr_scheduler constant \
    --warmup_steps 100 \
    --trim_batches \ 
    --do_train \
    --do_predict \ 
    --additional_data_fields doc_id label_name \
    --early_stopping_patience 20 \
    --segment_levels tokens pages \
    --optimizer adamw \
    --weight_decay 1e-5 \
    --adam_epsilon 1e-8 \
    --num_workers 4 \
    --val_check_interval 1

The models presented in the paper differs only in two places. The first is the choice of --relative_bias_args. T5 uses [{'type': '1d'}] whereas both +2D and +DALL-E use [{'type': '1d'}, {'type': 'horizontal'}, {'type': 'vertical'}]

Moreover +DALL-E had --context_embeddings set to [{'dimension': 1024, 'use_position_bias': False, 'embedding_type': 'discrete_vae', 'pretrained_path': '', 'image_width': 256, 'image_height': 256}]

3. Evaluate

3.1 Convert output to the submission file

In order to compare two files (generated by the model with the provided library and the gold-truth answers), one has to convert the generated output into a format that can be directly compared with documents.jsonl. Please use:

python to_submission_file.py ${downloaded_data_path} ${out_dir}

3.2 Evaluate reproduced models

Finally outputs can be evaluated using the provided evaluator. First, get back into main directory, where this README.md is placed and install it by cd due_evaluator-master && pip install -r requirement And run:

python due_evaluator --out-files baselines/test_generations.jsonl --reference ${downloaded_data_path}/DeepForm

3.3 Evaluate baseline outputs

We provide an examples of outputs generated by our baseline (DeepForm). They should be processed with:

python benchmarker-code/to_submission_file.py ${downloaded_data_path}/model_outputs_example ${downloaded_data_path}
python due_evaluator --out-files ./benchmarker/cli/l5/baselines/test_generations.txt.jsonl --reference ${downloaded_data_path}/DeepForm/test/document.jsonl

The expected output should be:

       Label       F1  Precision   Recall
  advertiser 0.512909   0.513793 0.512027
contract_num 0.778761   0.780142 0.777385
 flight_from 0.794376   0.795775 0.792982
   flight_to 0.804921   0.806338 0.803509
gross_amount 0.355476   0.356115 0.354839
         ALL 0.649771   0.650917 0.648630
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

FastCover: A Self-Supervised Learning Framework for Multi-Hop Influence Maximization in Social Networks by Anonymous.

0 Apr 02, 2021
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
The official TensorFlow implementation of the paper Action Transformer: A Self-Attention Model for Short-Time Pose-Based Human Action Recognition

Action Transformer A Self-Attention Model for Short-Time Human Action Recognition This repository contains the official TensorFlow implementation of t

PIC4SeRCentre 20 Jan 03, 2023
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
A generator of point clouds dataset for PyPipes.

CloudPipesGenerator Documentation | Colab Notebooks | Video Tutorials | Master Degree website A generator of point clouds dataset for PyPipes. TODO Us

1 Jan 13, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
Code for paper: Towards Tokenized Human Dynamics Representation

Video Tokneization Codebase for video tokenization, based on our paper Towards Tokenized Human Dynamics Representation. Prerequisites (tested under Py

Kenneth Li 20 May 31, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
Real-time Neural Representation Fusion for Robust Volumetric Mapping

NeuralBlox: Real-Time Neural Representation Fusion for Robust Volumetric Mapping Paper | Supplementary This repository contains the implementation of

ETHZ ASL 106 Dec 24, 2022